bzoj1016(矩阵树定理+MST)

这个可以边做MST边求生成树的方案数,就是在加入相同边权的时候统计各个联通块的生成树方案数并缩成一点(因为不同MST方案数来自于取相同边权的边),然后把他们都乘起来就是了。。

然后写起来比较恶心就是了。。

 

 

/*
 *        ┏┓    ┏┓
 *        ┏┛┗━━━━━━━┛┗━━━┓
 *        ┃       ┃  
 *        ┃   ━    ┃
 *        ┃ >   < ┃
 *        ┃       ┃
 *        ┃... ⌒ ...  ┃
 *        ┃       ┃
 *        ┗━┓   ┏━┛
 *          ┃   ┃ Code is far away from bug with the animal protecting          
 *          ┃   ┃   神兽保佑,代码无bug
 *          ┃   ┃           
 *          ┃   ┃        
 *          ┃   ┃
 *          ┃   ┃           
 *          ┃   ┗━━━┓
 *          ┃       ┣┓
 *          ┃       ┏┛
 *          ┗┓┓┏━┳┓┏┛
 *           ┃┫┫ ┃┫┫
 *           ┗┻┛ ┗┻┛
 */
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<bitset>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1LL<<(x))
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid (x+y>>1)
#define NM 105
#define nm 10005 
#define pi 3.1415926535897931
using namespace std;
const int inf=31011;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
 
 
 



struct tmp{
    int x,y,v;
    bool operator<(const tmp&o)const{return v<o.v;}
}a[nm];
int g[NM][NM][NM],ans;
int n,m,f[NM],_f[NM],tot,d[NM],c[NM],cnt[NM];
int _find(int x){return _f[x]==x?x:_f[x]=_find(_f[x]);}
int find(int x){return f[x]==x?x:f[x]=find(f[x]);}

int det(int a[][NM]){
    int ans=1;int n=a[0][0]-1;
    //inc(i,1,n){inc(j,1,n)printf("%d ",a[i][j]);putchar('\n');}
    inc(i,1,n)inc(j,i+1,n){
	for(int x=i,y=j;a[y][i];swap(x,y)){
	    int t=a[x][i]/a[y][i];
	    inc(k,i,n)a[x][k]+=inf-t*a[y][k]%inf,a[x][k]%=inf;
	}
	if(!a[i][i])ans=-ans;
	if(!a[i][i])inc(k,i,n)swap(a[i][k],a[j][k]);
    }
    inc(i,1,n)ans*=a[i][i],ans%=inf;ans+=inf;ans%=inf;
    return ans;
}

int main(){
    //freopen("data.in","r",stdin);
    n=read();m=read();ans=1;
    inc(i,1,m)a[i].x=read(),a[i].y=read(),a[i].v=read();
    sort(a+1,a+1+m);
    inc(i,1,n)f[i]=i;
    inc(i,1,m){
	int k=i;
	while(a[i].v==a[k+1].v&&k<m)k++;
	inc(j,1,n)_f[j]=j;mem(c);mem(cnt);mem(d);
	inc(j,i,k)if(find(a[j].x)!=find(a[j].y)){
	    int x=_find(find(a[j].x)),y=_find(find(a[j].y));
	    if(x!=y)_f[x]=y;
	}
	tot=0;
	inc(j,i,k)if(find(a[j].x)!=find(a[j].y)){
	    int x=find(a[j].x),y=find(a[j].y);int t=_find(x);
	    if(!c[t])c[t]=++tot,d[t]=1,cnt[c[t]]=1;
	    if(!d[x])d[x]=++cnt[c[t]];
	    if(!d[y])d[y]=++cnt[c[t]];
	}
	inc(j,1,tot)mem(g[j]),g[j][0][0]=cnt[j];
	inc(j,i,k)if(find(a[j].x)!=find(a[j].y)){
	    int x=find(a[j].x),y=find(a[j].y);int t=c[_find(x)];
	    g[t][d[x]][d[y]]--;g[t][d[y]][d[x]]--;
	    g[t][d[x]][d[x]]++;g[t][d[y]][d[y]]++;
	}
	inc(j,1,tot)ans*=det(g[j]),ans%=inf;
	inc(j,i,k){
	    int x=find(a[j].x),y=find(a[j].y);
	    if(x!=y)f[x]=y;
	}
	i=k;
    }
    inc(i,1,n)if(find(i)!=find(1))return 0*printf("0\n");
    return 0*printf("%d\n",ans);
}

 

 

 

 

1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 7601  Solved: 3201
[Submit][Status][Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

HINT

 

Source

 

[Submit][Status][Discuss]



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值