题目概述
给出n个点和m条边,求最小生成树的个数,题目保证相同权值的边不超过10条。
解题报告
用Prim好像无从下手,那么我们就从Kruskal的角度来分析。如果把边按照边权排序,并把相同边权的边视为片区,会发现这些片区实际上是独立的,也就是说每个片区选取的边在符合Kruskal算法的前提下无论怎么选会让相同的一些点相连,简单证明如下:
假设结论不成立,则存在两种满足Kruskal算法的选择方法a和b,会让不同的点相连。
设a方法让属于点集A的点相连,b方法让属于点集B的点相连,那么A!=B,则点集A∪B才是满足Kruskal算法的点集,与题设矛盾。
所以结论成立。
所以我们只需要求出每个片区的方案,然后全部乘起来就是答案。又因为题目里说了相同边权的边不超过10条,所以就可以Dfs乱搞了,否则好像要基尔霍夫矩阵(然而我并不会)。
示例程序
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100,maxm=1000,MOD=31011;
int n,m,ans,tot,num[maxm+5],father[maxn+5];
struct Edge
{
int x,y,z;
bool operator < (const Edge &a) const {return z<a.z;}
};
Edge e[maxm+5];
int getfa(int x)
{
if (father[x]==x) return x;
return getfa(father[x]);
}
void Dfs(int st,int gl,int num,int sum)
{
if (num==sum) {tot++;return;}
if (st>gl) return;
int fx=getfa(e[st].x),fy=getfa(e[st].y);
if (fx==fy) {Dfs(st+1,gl,num,sum);return;}
Dfs(st+1,gl,num,sum);
int tem=father[fx];father[fx]=fy;
Dfs(st+1,gl,num+1,sum);
father[fx]=tem;
}
int main()
{
freopen("program.in","r",stdin);
freopen("program.out","w",stdout);
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++) scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].z);
sort(e+1,e+1+m);
for (int i=1;i<=n;i++) father[i]=i;
for (int i=1;i<=m;i++)
{
int fx=getfa(e[i].x),fy=getfa(e[i].y);num[i]=num[i-1];
if (fx!=fy) father[fx]=fy,num[i]++;
}
if (num[m]<n-1) {printf("0\n");return 0;}
for (int i=1;i<=n;i++) father[i]=i;ans=1;
for (int i=1,j;i<=m;i=j)
{
for (j=i+1;j<=m&&e[i].z==e[j].z;j++);
tot=0;Dfs(i,j-1,0,num[j-1]-num[i-1]);
ans=(ans*tot)%MOD;
for (int k=i;k<=j-1;k++)
{
int fx=getfa(e[k].x),fy=getfa(e[k].y);
if (fx!=fy) father[fx]=fy;
}
}
printf("%d\n",ans);
return 0;
}