BZOJ 1016-最小生成树计数(最小生成树+DFS)

1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec   Memory Limit: 162 MB
Submit: 5909   Solved: 2403
[ Submit][ Status][ Discuss]

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8



就是不同的最小生成树方案,每种权值的边的数量是确定的,

每种权值的边的作用是确定的, 排序以后先做一遍最小生成树,

得出每种权值的边使用的数量x然后对于每一种权值的边搜索,

得出每一种权值的边选择方案

#include<math.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
#define maxn 10005
#define mod 31011 
int n,m,ans=1,sum,parent[maxn];
struct node
{
	int u,v,c;
}a[maxn];
struct node1
{
	int l,r,num;
}b[maxn];
bool comp(node a,node b)
{
	return a.c<b.c;
}
int find(int x)
{
	if(parent[x]==x)
		return x;
	return find(parent[x]);
}
void dfs(int x,int y,int num)
{
	if(y==b[x].r+1)
	{
		if(num==b[x].num)
			sum++;
		return;
	}
	int t1=find(a[y].u);
	int t2=find(a[y].v);
	if(t1!=t2)
	{
		parent[t1]=t2;
		dfs(x,y+1,num+1);
		parent[t1]=t1;
	}
	dfs(x,y+1,num); 
}
int main(void)
{
	int i,j,cnt=0,tot=0;
	scanf("%d%d",&n,&m);
	for(i=1;i<=m;i++)
		scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].c);
	sort(a+1,a+m+1,comp);
	for(i=1;i<=n;i++)
		parent[i]=i;
	for(i=1;i<=m;i++)
	{
		int t1=find(a[i].u);
		int t2=find(a[i].v);
		if(a[i].c!=a[i-1].c)
		{
			b[++cnt].l=i;
			b[cnt-1].r=i-1;
		}
		if(t1!=t2)
		{
			parent[t1]=t2;
			b[cnt].num++;
			tot++;
		}
	}
	b[cnt].r=m;
	if(tot!=n-1)
	{
		printf("0\n");
		return 0;
	}
	for(i=1;i<=n;i++)
		parent[i]=i;
	for(i=1;i<=cnt;i++)
	{
		sum=0;
		dfs(i,b[i].l,0);    
		ans=(ans*sum)%mod;
		for(j=b[i].l;j<=b[i].r;j++)
		{
			int t1=find(a[j].u);
			int t2=find(a[j].v);
			if(t1!=t2)
				parent[t1]=t2;     
		}
	}
	printf("%d\n",ans);
	return 0;
}


题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值