全差分放大器——共模的意义

转载自全差分放大器(1)——共模的意义

  全差分运算放大器(Fully differential amplifiers,FDA)是简单的单极管运算放大器的进阶,通常在电路中,全差分运放会作为运放的第一级,它的作用是用来对输入信号进行预放大,第二级通常会是一个双端输入,单端输出的运放,用来产生较大的增益,进而配合环路完成相应的功能(数字比较器,高速数字接口,远端采样,误差放大器等应用)。
在这里插入图片描述
  如上图所示,Vin1和Vin2是两个完全不一样的输入,这两个信号中包含了共模分量(Vin1+Vin2)/2,以及差模分量,分别是(Vin1-Vin2)/2和(Vin2-Vin1)/2,总的输出分别是Vout1和Vout2。针对输出,我们采用叠加法去理解,那就是Vout1是Vin1中共模分量和差模分量共同放大形成,同样,Vout2是Vin2中共模分量和差模分量共同放大形成。
在这里插入图片描述
  如上图所示,将输入的共模分量和差模分量分开放大,并叠加到最终输出。可以理解,共模分量的信号经过FDA之后,产生VCM1和VCM2应该是相等的,差模分量的信号经过FDA之后,产生的VDM1和VDM2是不相等的。所以我们计算增益Av=(Vout1-Vout2)/(Vin1-Vin2),这个公式等于什么呢?等于(VDM1-VDM2)/(Vin1-Vin2)。看到这里小伙伴肯定会想,这个增益里面为什么没有共模成分呢?是的,很明显,共模成分被抑制了,共模成分的增益对实际的增益毫无贡献,实际的增益完全是差模增益!!这里就是我们Fully Differential Amplifiers中Fully的精髓所在,完全没有共模成分!完全是差模增益!!!

  注意这里的区别,我说的是完全没有共模成分,并没有说完全没有共模增益!这两个是完全不同的东西,共模成分指的是(Vin1+Vin2)/2,Vcm1和Vcm2。共模增益看下面解释。


现在,我们再去从物理的角度聊聊全差分电路。
在这里插入图片描述
  上图是个典型的全差分电路。对全差分电路而言,当差分输入时,它的差模增益是(Vout1-Vout2)/(Vin1-Vin2),这个是大家公认的公式;但是大家有没有想过,它的共模增益是什么呢?现在我们手边有四样东西,共模输入Vin1和Vin2,这两个输入相等,共模输出Vout1和Vout2,这两个输出也相等,我们每个输出都被放大了相等的Vout1/Vin1倍,共模输出除以共模输入不就是共模增益嘛!

  具体的共模增益算法就是将电路对折,然后用前面一章节的知识(单极运放)去计算增益!

  当然,实际电路肯定存在随机误差(关于随机误差和系统误差会在后面专门开一节模拟电路trim的章节,里面会介绍更加详细),比如输入对管误差,RD的误差等,这些误差会导致一个严重的问题,就是输出电压不相等!Vout1不等于Vout2!

  这就尴尬了,我们明明刚才说好的共模增益Acm1=Vout1/Vin1或者Acm2=Vout2/Vin2,这是建立在我们同意两个输入相等两个输出相等的条件下的,现在Acm1不等于Acm2了,那共模增益究竟是这里面的哪一个?

  不重要了,这个时候共模增益不重要了,因为我们发现输出有一个奇怪的东西进来了——差模输出。

  明明没有差模输入,却存在着差模输出,这着实让人摸不着头脑,我们的增益还怎么进行下去呢?Av1代表共模增益1,Av2代表共模增益2,他们之间有一个增益差Av1-Av2,这个增益差是由于随机误差引起的差模分量!这不就是书上所说的共模到差模的转换嘛!
在这里插入图片描述
  如上图所示,假设有两个增益分别是Av1和Av2,Vin1=Vin2,Vout1不等于Vout2,最终我们可以推算出Av2=Av1+ΔAv,如果我们用Av2-Av1,就可以得出随机误差导致的共模到差模转换的差模分量ΔAv!这个差模分量可是我们最不喜欢的哦,因为它隐藏在了真实的差模增益里面,使得我们一些共模噪声被放大在输出了;并且,这个差模分量的存在好像在向我们宣示:愚蠢的人类,任你们再怎么努力,也根本无法全部抑制共模噪声,哈哈!

  人类为了体现一个电路的抑制共模噪声的能力,用差模增益除以共模到差模的转换,名之为CMRR共模抑制比。(笔者推崇)

  有的地方认为CMRR是差模增益除以共模增益,这个从方向上来说也不能说它是错的,只是从各自不同角度去阐述CMRR罢了。分析一波,一个电路的共模增益Acm越大,那么对于这个电路中随机误差产生的共模到差模的转换也就越大,可以认为是k*Acm。我们推崇准确的描述公式如下所示:
CMRR=Adm/(k*Acm)

  但是,另外一些人认为既然随机误差k存在,那么Adm/Acm不能代表CMRR呢?反正共模增益越大,共模到差模的转换越大,CMRR越差;差模增益越大,CMRR越好。

  这个比喻就像我把你的身高除以你体重的百分之70作为衡量你是否肥胖的标准,结果有个人说,不,我用身高除以体重作为衡量是否肥胖的标准。我能说他错嘛?不能,我们俩方向都是对的,我们唯一的区别就是我的CMRR中可能100dB就是优秀的成绩,但是另外一个人的CMRR中60dB就是优秀的成绩了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值