评价指标
1. RMSE(Root Mean Square Error):均方根误差
RMSE(Root Mean Square Error):均方根误差,是评估预测模型精度的常用指标之一。它衡量的是预测值与真实值之间的偏差程度,计算的是预测值与真实值之差的平方和的平方根。RMSE的取值范围是0到正无穷大,数值越小表示模型的预测误差越小,模型的预测能力越强。在实际应用中,RMSE常用于评估回归模型的预测精度。

2. MAE(Mean Absolute Error):平均绝对误差,也叫均方误差
MAE(Mean Absolute Error):平均绝对误差,也叫均方误差,是另一种常用的评估指标。它计算的是每个样本的预测误差的绝对值的平均数。MAE的优点是可以直观地看出模型预测值与真实值之间的差距大小,它不考虑预测值的正负,同时也更加关注绝对误差的大小,这使得它比均方误差更能反映预测值的偏离程度。MAE的取值范围是[0,+∞),当预测值与真实值完全吻合时等于0,即完美模型;误差越大,该值越大。


最低0.47元/天 解锁文章
5万+

被折叠的 条评论
为什么被折叠?



