Python程序代码
文章平均质量分 63
小桥流水---人工智能
一切皆有可能!
展开
-
Python和MATLAB都可以用来绘制散点图。两者的语法和功能相似,但在实现细节和定制选项上略有差异。以下分别用Python和MATLAB绘制一个散点图,并说明它们的不同点。
Python和MATLAB都可以用来绘制散点图。两者的语法和功能相似,但在实现细节和定制选项上略有差异。以下分别用Python和MATLAB绘制一个散点图,并说明它们的不同点。原创 2024-10-31 15:19:00 · 314 阅读 · 0 评论 -
Python和MATLAB都可以用于绘制折线图,下面是分别用Python和MATLAB绘制简单折线图的示例。
库调用:Python需要导入matplotlib,MATLAB无需导入额外的库。图例设置:Python使用,MATLAB使用。定制:两者都支持多种定制参数,但Python在配合其他库(如seaborn)时具备更高的灵活性。原创 2024-10-31 15:16:20 · 344 阅读 · 0 评论 -
解决TabError: inconsistent use of tabs and spaces in indentation
是指在代码中使用了不一致的缩进方式,即在同一文件中混用了Tab和空格来缩进代码行。Python 对代码缩进要求严格,必须在整个代码中统一使用或来缩进,不能混用,否则会导致这种错误。原创 2024-10-31 11:32:17 · 132 阅读 · 0 评论 -
什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
神经网络架构搜索(NAS, Neural Architecture Search)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工设计更优的架构。NAS的目标是从一个巨大的神经网络架构搜索空间中,找到能够在特定数据集和任务上表现最优的网络结构。原创 2024-10-22 09:53:02 · 991 阅读 · 0 评论 -
神经网络之所以强大,是因为它们能够通过复杂的层次结构自动学习数据中的隐藏模式和特征,尤其在处理高维、复杂和非线性数据时表现出色。它们的原理核心可以归纳为以下几个方面:
神经网络之所以强大,是因为它们能够通过复杂的层次结构自动学习数据中的隐藏模式和特征,尤其在处理高维、复杂和非线性数据时表现出色。原创 2024-10-21 21:29:24 · 417 阅读 · 0 评论 -
在图神经网络(GNN)中,GNN、GCN、GAT三者之间的关系与传统神经网络(NN)、卷积神经网络(CNN)、注意力机制(AT)之间的关系有一定的相似性,但并不是完全相同的。
总结来说,GNN、GCN、GAT 的关系与 NN、CNN、AT 之间的关系有一定的相似性,都是一种泛化关系:GNN 是最基础的框架,GCN 和 GAT 是针对特定需求(卷积和注意力机制)的扩展和增强。但由于处理的输入数据类型不同,图神经网络和传统神经网络在细节上仍有显著差异。在图神经网络(GNN)中,GNN、GCN、GAT三者之间的关系与传统神经网络(NN)、卷积神经网络(CNN)、注意力机制(AT)之间的关系有一定的相似性,但并不是完全相同的。原创 2024-10-21 16:56:02 · 249 阅读 · 0 评论 -
GCN(图卷积神经网络)中的**信息聚合**和传统聚类算法是不同的概念,尽管它们都涉及到将某些对象的信息整合在一起。下面我将详细解释两者的差异:
虽然GCN中的信息聚合和聚类算法都涉及到某种形式的信息融合或分组,但它们在本质上是不同的。GCN中的信息聚合是图神经网络的一种操作机制,通过逐层邻居信息的传播和更新来构建节点的特征。而传统聚类算法是一种无监督学习方法,其目的是根据数据点的相似性进行分组。GCN关注的是如何通过图结构的邻接关系传递信息,聚类算法则关注如何通过相似性将数据点划分为不同的类。原创 2024-10-21 15:00:04 · 1041 阅读 · 0 评论 -
图卷积神经网络(Graph Convolutional Network, GCN)与传统的卷积神经网络(Convolutional Neural Network, CNN)确实有很大的不同
卷积核(或过滤器)可以在二维平面(如图像的高度和宽度)上滑动,保持参数共享,减少计算复杂度,进而提取层级结构中的高阶特征。换句话说,GCN 的“卷积核”是在图上进行的,它不再是固定形状的,而是依赖于图的邻接关系。图数据的节点和边之间没有固定的网格结构,因此 CNN 的卷积操作不能直接应用于图上。因此,虽然图卷积神经网络和传统的卷积神经网络之间的操作方式和应用场景有显著差异,但它们共享了通过逐层学习来提取特征的理念。尽管 GCN 处理的是图,而 CNN 处理的是规则的网格,但它们都通过。原创 2024-10-21 13:43:08 · 402 阅读 · 0 评论 -
在 Python 的神经网络程序(特别是 PyTorch 框架中),`class` 和 `forward()` 是定义神经网络模型的关键部分。它们的作用如下:
在 Python 的神经网络程序(特别是 PyTorch 框架中),是定义神经网络模型的关键部分。原创 2024-10-20 10:32:27 · 375 阅读 · 0 评论 -
解决 Pandas 中的 XLRDError:处理 “Excel xlsx file; not supported” 错误
通过将xlrd替换为openpyxl,你不仅可以避免XLRDError,还可以利用openpyxl支持的更多功能,如写入.xlsx文件、修改现有文件等。这样的改动有助于保持你的数据处理流程的稳定性和安全性。原创 2024-09-25 14:38:58 · 520 阅读 · 0 评论 -
np.argpartition 是 NumPy 库中的一个非常有用的函数,具体用法如下:
是 NumPy 库中的一个非常有用的函数,它用于寻找数组中的第 k个最小元素的索引,并按此标准对数组元素进行部分排序,但它不会完全排序整个数组。这个函数返回的是数组元素排序后的索引,而不是排序后的元素本身。这使得在处理大数据集时特别有用,尤其是当你需要快速找到一个或多个元素的位置而不关心整个数组的完全排序时。原创 2024-09-15 22:16:12 · 325 阅读 · 0 评论 -
深入理解Python中的“_,”:一个实用的语法特性
在Python编程中,你可能经常会看到一个特殊的标识符“_”。这个符号在Python中有多种用途,其具体含义依上下文而定。本文将探讨其中一种常见用法——作为一个临时性的占位符——并解释它在实际编程中的实用性和应用场景。原创 2024-09-15 22:10:44 · 932 阅读 · 0 评论 -
random.randrange与torch.arange的用法
功能差异用于生成单个随机整数,而用于生成一个连续的整数序列张量。用途差异常用于需要随机性的场景(如随机选择、测试等),而常用于深度学习中的张量操作,如创建索引、制作掩码、生成等间隔的数值序列等。输出类型输出一个 Python 的整数,而输出一个 PyTorch 张量,这在进行批量操作或与其他 PyTorch 功能结合时非常重要。原创 2024-09-15 19:16:40 · 271 阅读 · 0 评论 -
简化文件和目录操作:深入了解 Python 的 pathlib 模块
在进行文件系统操作时,如读取、写入文件或管理目录结构,传统的方法是使用 Python 的os模块。然而,从 Python 3.4 开始,引入了一个新的库pathlib,它提供了一种面向对象的方式来处理文件系统路径。本文将深入探讨pathlib模块,解释其如何简化文件和目录操作。原创 2024-09-15 19:11:51 · 424 阅读 · 0 评论 -
深入了解 Python 的 argparse 模块:命令行参数处理的艺术
Python 是一种功能强大的编程语言,广泛应用于各种领域,从Web开发到数据科学,再到自动化脚本。在众多工具和模块中,argparse模块提供了一种便捷的方式来处理命令行参数,是任何希望提供用户可配置脚本或应用的Python程序员的必备工具。本文将详细介绍argparse的功能、用途和实现方法。原创 2024-09-15 19:04:00 · 432 阅读 · 0 评论 -
探索学习Python的最佳开发环境和编辑器
Python,作为目前最受欢迎的编程语言之一,因其简洁明了的语法和强大的功能性而备受开发者喜爱。无论是数据科学、机器学习、Web开发还是自动化脚本,Python都有着广泛的应用。选择合适的开发环境和编辑器对于提高编程效率和学习体验至关重要。原创 2024-09-15 18:58:05 · 1110 阅读 · 0 评论 -
ModuleNotFoundError: No module named ‘graph_layer‘,不是一个库,而是某个文件找不到!这种情况怎么办呢?(使用sys加载文件的路径)
文件位于你的项目目录中,或者在一个Python可以识别的路径上。如果这个文件是你的项目的一部分,请确认它和主程序文件在同一个文件夹内或者正确配置了Python的搜索路径。是在一个子文件夹中,你需要使用正确的相对导入,例如如果。这是因为Python无法找到这个文件。的文件夹到 Python 的搜索路径。:可以在你的主程序中动态添加包含。原创 2024-09-14 09:54:33 · 205 阅读 · 0 评论 -
pandas读取带有表头的数据文件,读取无表头的数据文件
在Python中使用pandas库读取数据时,常见的问题之一就是如何处理数据文件中的表头。原创 2024-09-08 22:19:56 · 1009 阅读 · 0 评论 -
图神经网络GNN的前世今生
图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的用户关系、交通网络中的道路连接等。处理图数据的传统方法通常依赖于复杂的特征工程和传统的机器学习算法,但这些方法往往难以充分挖掘图数据的潜在关系和模式。原创 2024-08-24 21:56:50 · 456 阅读 · 0 评论 -
蒙特卡洛方法的起源和发展
由于这种方法依赖于大量的随机数生成和统计分析,乌拉姆将其命名为“蒙特卡洛方法”,灵感来自摩纳哥的蒙特卡洛赌场,因为赌场中的赌博游戏与随机性和概率密切相关。例如,法国数学家布莱士·帕斯卡尔(Blaise Pascal)和皮埃尔·德·费马(Pierre de Fermat)在17世纪合作探讨了概率论的基础问题,这为后来蒙特卡洛方法的发展奠定了理论基础。在生成模型中,用于样本生成和模型训练。例如,评估金融投资组合的风险,模拟天气预测的不确定性对农业产出的影响,或者在工程领域中评估系统设计的可靠性和安全性等。原创 2024-08-23 15:18:27 · 924 阅读 · 0 评论 -
如何在Windows命令提示符(CMD)中删除Python虚拟环境
在Python开发过程中,虚拟环境是一个非常重要的工具,它允许开发者为不同的项目创建隔离的运行环境。但有时候,当一个项目结束或者需要释放系统空间时,我们可能需要删除这些虚拟环境。本文将介绍在Windows操作系统的命令提示符(CMD)中,如何删除使用venvconda和virtualenv创建的Python虚拟环境。原创 2024-08-20 15:23:12 · 744 阅读 · 0 评论 -
urllib3 v2.0 only supports OpenSSL 1.1.1+, currently “ ImportError: urllib3 v2.0 only supports OpenS
遇到这个错误是因为您的Python环境中的ssl模块使用的OpenSSL版本低于urllib3 v2.0所需的版本。:升级到最新的Python版本通常会包括对更高版本的OpenSSL的支持。这不仅解决了OpenSSL版本的问题,还可能带来其他安全性和性能的改进。:创建一个新的Python虚拟环境,并在其中安装最新版本的Python和相关库。这样可以避免修改系统级Python环境的复杂性和潜在的依赖问题。:如果您使用的是Linux或Mac,可以尝试手动安装或更新OpenSSL。原创 2024-08-20 15:18:39 · 1431 阅读 · 0 评论 -
PyTorch中的Subset类:简介与应用示例
在深度学习框架PyTorch中,是一个非常有用的类,用于从一个较大的数据集中选择一个子集。这种功能在机器学习的训练和验证过程中尤为重要,允许开发者对数据进行划分和特定样本的训练。本文将介绍Subset的概念、基本用法以及一些实际应用示例。原创 2024-08-17 21:13:28 · 955 阅读 · 0 评论 -
PyTorch中的torch.cat函数详解
在PyTorch中,torch.cat是一个非常实用的函数,用于将多个张量(Tensor)沿指定维度连接起来。这个功能在机器学习和深度学习中经常用到,尤其是在需要合并数据或模型输出时。本文将详细介绍torch.cat函数的用法,并通过一些示例来说明其应用。原创 2024-08-17 21:02:35 · 689 阅读 · 0 评论 -
使用 NumPy 生成随机数:一个全面的指南
NumPy 是一个开源库,用于支持大规模多维数组和矩阵的操作,同时提供了大量的数学函数工具,以便于这些数据类型的操作。np.random是 NumPy 提供的用于生成随机数的子库。原创 2024-08-07 21:24:41 · 637 阅读 · 0 评论 -
python图表没有正确显示中文,这通常是因为matplotlib的默认设置不支持中文字符,或者相应的字体没有正确加载。
如果图表没有正确显示中文,这通常是因为matplotlib的默认设置不支持中文字符,或者相应的字体没有正确加载。你可以通过指定支持中文的字体来解决这个问题。原创 2024-08-05 19:58:45 · 426 阅读 · 0 评论 -
Python中`drop`函数的详细介绍与使用方法
它主要用于删除DataFrame或Series中的指定行或列。函数是Pandas中处理数据非常有效的工具,可以通过各种参数灵活地删除不需要的行或列。这样,原始DataFrame会直接被修改,而不会返回新的DataFrame。在实际应用中,有时候需要直接在原始DataFrame上进行修改,这时可以设置。函数的使用方法,并提供实际示例来说明如何在不同场景中应用这一函数。时,可能会遇到指定的标签不存在的情况。通过指定行的索引或标签,并设置。删除列与删除行类似,但需要将。参数来指定要删除的列名。原创 2024-08-04 20:07:39 · 1608 阅读 · 0 评论 -
pandas中的concat函数:详尽指南
concat函数用于沿特定轴(行或列)组合两个或多个pandas对象(Series或DataFrame)。当需要组合具有相同模式的数据集或对组合数据进行操作时,concat函数非常有用。原创 2024-08-03 20:54:42 · 4809 阅读 · 0 评论 -
Python中的`enumerate`函数详解及其在循环中的应用
enumerate。原创 2024-08-03 09:12:13 · 810 阅读 · 0 评论 -
探索极限学习机(ELM):从基础到实践的全面指南
极限学习机(Extreme Learning Machine,简称ELM)是一种高效的单层前馈神经网络,由黄广斌教授于2006年首次提出。本博客将全面介绍ELM的发展历程、基本原理、功能特性、应用领域,以及如何在Python中实现ELM。自2006年问世以来,ELM得到了快速发展和广泛应用,研究者们提出了多种改进版本,如增量ELM、核ELM等,以适应更多样的数据类型和学习任务。ELM的核心思想是随机初始化输入层到隐藏层的权重和偏差,然后直接计算隐藏层到输出层的权重。原创 2024-07-31 08:36:30 · 638 阅读 · 0 评论 -
LIME对一个模型预测结果的解释,我们对此进行详细的分析,lime究竟是如何解决深度学习的黑箱模型的?
模型预测该样本属于versicolor的概率为0.99。主要推动这个预测的特征是和,具体来说:小于4.25时显著推动了预测为versicolor。小于2.75时也推动了预测为versicolor。样本的实际特征值显示为4.70,为1.20,为2.80,和为6.10。这幅图形象地展示了模型是如何通过特征值的不同组合来做出预测的,并且说明了每个特征值在这个特定预测中的作用和贡献。原创 2024-07-20 16:02:15 · 308 阅读 · 0 评论 -
UnicodeEncodeError: ‘gbk‘ codec can‘t encode character ‘\xb5‘ in position 93304:(lime可视化报错)
报错是由于文件写入过程中编码格式不匹配导致的。为了避免这种问题,可以显式指定使用UTF-8编码来写入文件。原创 2024-07-20 15:57:48 · 446 阅读 · 0 评论 -
ModuleNotFoundError: No module named ‘lime‘,lime。 安装 LIME库
LIME是一个强大的工具,能够解释任何机器学习模型的预测结果。通过构建简单的、本地可解释模型,LIME 提供了对复杂模型的透明度和信任度。原创 2024-07-20 15:50:53 · 480 阅读 · 0 评论 -
数据标准化与归一化:深入理解及应用
在数据预处理中,选择合适的标准化或归一化方法对提升模型性能至关重要。标准化适用于数据分布近似正态分布的情况,而归一化更适合数据分布没有明显规律的情况。在实际应用中,我们应根据数据的具体情况和使用的机器学习算法来选择合适的预处理方法。原创 2024-07-17 22:12:19 · 1299 阅读 · 0 评论 -
使用 eli5 工具包进行 Permutation Importance 计算的详细指南
是一种模型无关的方法,它不依赖于特定的机器学习算法。其基本思想是:对于某个特征,将其值随机打乱,然后测量模型性能的变化。如果打乱某个特征的值导致模型性能显著下降,那么该特征对于模型的预测结果是非常重要的。相反,如果打乱某个特征的值对模型性能几乎没有影响,那么该特征的重要性较低。在这篇博客中,我们详细介绍了如何使用eli5工具包中的类来计算特征的重要性。通过这种方法,我们可以更好地理解模型的决策过程,并进行有效的特征选择。希望这篇指南能帮助你在实际项目中更好地应用方法。原创 2024-07-17 16:58:43 · 465 阅读 · 0 评论 -
详解网格搜索与神经结构搜索NAS的区别及应用场景
网格搜索是一种简单且全面的超参数优化方法,适用于传统机器学习模型及参数空间较小的情况。而神经结构搜索则是一种强大的自动化网络设计方法,适用于复杂深度学习模型的设计,但需要大量的计算资源支持。在选择使用哪种搜索方法时,应根据具体应用场景和资源情况进行权衡。如果你有足够的计算资源且需要设计高性能的深度学习模型,NAS是一个很好的选择。如果你的任务是对传统机器学习模型进行超参数调优,网格搜索则更加合适。原创 2024-07-15 21:37:37 · 1059 阅读 · 0 评论 -
ImportError: DLL load failed while importing _swigfaiss: 找不到指定的模块。
解决ImportError: DLL load failed while importing _swigfaiss: 找不到指定的模块错误的关键是确保所有必要的依赖项正确安装,并且库与 Python 版本兼容。通过检查并更新系统依赖项,重新安装库,创建虚拟环境,以及配置环境变量,可以有效地解决这一问题。以下是一个示例,展示如何重新安装faiss。原创 2024-07-15 15:52:19 · 2342 阅读 · 0 评论 -
AttributeError: module ‘numpy‘ has no attribute ‘typeDict‘
如果你遇到错误,可以通过降级numpy版本、更新依赖库、修改代码或寻找替代库来解决。具体选择哪种方法取决于你的项目需求和权限情况。以下是一个示例,展示如何降级numpy。原创 2024-07-15 15:50:15 · 2519 阅读 · 0 评论 -
10分钟安装好torch的GPU版本(Windows)
(我测试了几个版本,发现只要保证cu118, cp38就可以。至于中间的torch版本,torchvision版本。什么版本都可以,因此你只要对应上cuda和python的版本就行)版本为11.8 , 一会下载的版本为cu118。确定python版本为为3.8,一会下载为cp38。显示True,表示安装成功!原创 2024-06-24 20:50:06 · 2172 阅读 · 2 评论 -
深入理解神经网络:BP神经网络、ANN、多层感知机、多层编码器和多层线性层
尽管这些术语可能令人困惑,但了解它们的具体定义和差异是理解深度学习多样化工具箱的关键。原创 2024-06-21 09:25:55 · 2289 阅读 · 0 评论