弹性力学(工程力学)

本文深入探讨弹性力学中的关键概念,包括胁变与胁强、胡克定理、体胀以及拉密方程。通过分析弹性体在力的作用下的形变规律,阐述了线性弹性体的本构关系,揭示了胁变与胁强之间的数学联系。同时,讨论了体胀效应和胡克定律在确定材料响应中的作用。最后,通过拉密方程解析了弹性体在平衡和非平衡状态下的动力学行为,涉及横波与纵波的传播特性。
摘要由CSDN通过智能技术生成


矢量力学与分析力学都基于研究系统由质点与刚体组成的假设,不考虑物体的大小、形状、自转的影响;而本文考虑物体的大小、形状并主要研究形变。

变形体一般可分为两类:

  • 弹性体:具有保持一定大笑与形状的趋势,在力的作用下发生形变,外力撤销后又恢复原状;
  • 流体:完全没有一定的形状;

本文研究弹性体的形变,同时又基于一定的假设:1、所有物质均为各向同性,且为典型的弹性体;2、弹性体遵循线性胡克定理且形变可逆;3、物体结构连续并忽略离散的微观结构,只研究宏观行为,所有的无穷小量对宏观结构小到结构连续而对微观结构又大到可忽略离散性质;

胁变与胁强

胁变

在这里插入图片描述
如图,以弹性体微小长方体部分的 x O y xOy xOy平面为例:

轴法向的相对拉伸形变称为张胁变,并以面外法向正方向为正(拉)以负方向为负(缩),以 x x x轴方向张变 ε 11 \varepsilon_{11} ε11为例:
ε 11 = lim ⁡ Δ x → 0 Δ ξ Δ x \varepsilon_{11}=\lim_{\Delta x\to 0}\cfrac{\Delta \xi}{\Delta x} ε11=Δx0limΔxΔξ
轴切向的形变角可分为两类,一类表征纯切胁变,并以图中方向为正;一类表征旋转,以旋转轴方向为正;以 x O y xOy xOy平面的切变 ε 12 \varepsilon_{12} ε12 z z z轴方向的旋转 φ 3 \varphi_3 φ3为例:
ε 12 = γ 12 + γ 21 2 , φ 3 = γ 21 − γ 12 2 γ 12 = lim ⁡ Δ y → 0 Δ ξ Δ y , γ 21 = lim ⁡ Δ x → 0 Δ η Δ x \varepsilon_{12}=\cfrac{\gamma_{12}+\gamma_{21}}{2},\varphi_3=\cfrac{\gamma_{21}-\gamma_{12}}{2} \\ \gamma_{12}=\lim_{\Delta y\to 0}\cfrac{\Delta \xi}{\Delta y},\gamma_{21}=\lim_{\Delta x\to 0}\cfrac{\Delta \eta}{\Delta x} ε12=2γ12+γ21,φ3=2γ21γ12γ12=Δy0limΔyΔξ,γ21=Δx0limΔxΔη
因此胁变 ε i j \varepsilon_{ij} εij有6个独立变量;

其可分为由胁强导致的形变 ε i j p \varepsilon_{ij}^p εijp与温升导致的体胀 ε i j T \varepsilon_{ij}^T εijT两部分:
ε i j = ε i j p + ε i j T     ( i , j = 1 , 2 , 3 ) \varepsilon_{ij}=\varepsilon_{ij}^p+\varepsilon_{ij}^T\ \ \ (i,j=1,2,3) εij=εijp+εijT   (i,j=1,2,3)

胁强

在这里插入图片描述
如图,以弹性体微小部分为例, y O z yOz yOz平面上的相对外力分为 x 、 y 、 z x、y、z xyz三个方向,分别记作 σ 11 、 σ 21 、 σ 31 \sigma_{11}、\sigma_{21}、\sigma_{31} σ11σ21σ31,均以面外法向正方向为正(拉力)以负方向为负(压力);相对外力具有压强的量纲:
σ i j = lim ⁡ Δ S j → 0 Δ F i Δ S j \sigma_{ij}=\lim_{\Delta S_j\to 0}\cfrac{\Delta F_i}{\Delta S_j} σij=ΔSj0limΔSjΔFi
其中 σ 11 \sigma_{11} σ11垂直于作用面,称为正应力(张胁强); σ 21 、 σ 31 \sigma_{21}、\sigma_{31} σ21σ31平行于作用面,称为剪应力(切胁强),且由于力矩平衡剪应力有关系:
σ i j = σ j i     ( i ≠ j ) \sigma_{ij}=\sigma_{ji}\ \ \ (i\ne j) σij=σji   (i=j)
同理胁强 σ i j \sigma_{ij} σij也有6个独立变量;

体胀

容易得到胁变与体胀系数的关系:
Θ = lim ⁡ V → 0 Δ V V = ε 11 + ε 22 + ε 33 \Theta=\lim_{V\to 0}\cfrac{\Delta V}{V}=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33} Θ=V0limVΔV=ε11+ε22+ε33
也可分为胁强体胀与温升体胀两部分:(其中 α = 1 V ( ∂ V ∂ T ) p \alpha=\cfrac{1}{V}\left( \cfrac{\partial V}{\partial T} \right)_p α=V1(TV)p为等压体胀系数)
Θ = Θ p + Θ T Θ p = ε 11 p + ε 22 p + ε 33 p , Θ T = ∫ α d T \Theta=\Theta^p+\Theta^T \\ \Theta^p=\varepsilon_{11}^p+\varepsilon_{22}^p+\varepsilon_{33}^p,\Theta^T=\int \alpha\text{d}T Θ=Θp+ΘTΘp=ε11p+ε22p+ε33p,ΘT=αdT
同时,平均正应力与胁强体胀系数也有线性关系,其比例称为体胀模量 K K K
σ ˉ = 1 3 ( σ 11 + σ 22 + σ 33 ) = K Θ p , K = E 3 ( 1 − 2 v ) \bar \sigma=\cfrac{1}{3}(\sigma_{11}+\sigma_{22}+\sigma_{33})=K\Theta^p,K=\cfrac{E}{3(1-2v)} σˉ=31(σ11+σ22+σ33)=KΘp,K=3(12v)E
只有受压力下体积被压缩的弹性体才是稳定的,因此泊松比还有限制条件:
v < 1 2 v<\cfrac{1}{2} v<21

胡克定理

胡克定理

正应力 σ 11 \sigma_{11} σ11会造成该轴方向的正张变 ε 11 p \varepsilon_{11}^p ε11p与其余两轴方向的负张变 ε 22 p 、 ε 33 p \varepsilon_{22}^p、\varepsilon_{33}^p ε22pε33p;其变化遵循线性关系,比例称为杨氏模量 E E E与泊松比 v v v
σ 11 = E ε 11 p ε 22 p = ε 33 p = − v ε 11 p \sigma_{11}=E\varepsilon_{11}^p \\ \varepsilon_{22}^p=\varepsilon_{33}^p=-v\varepsilon_{11}^p σ11=Eε11pε22p=ε33p=vε11p
剪应力 σ 12 \sigma_{12} σ12会造成两轴交面的正切变 ε 12 p \varepsilon_{12}^p ε12p;其变化遵循线性关系,比例称为切变模量 G G G
σ 12 = 2 G ε 12 p \sigma_{12}=2G\varepsilon_{12}^p σ12=2Gε12p
切变模量、杨氏模量、泊松比间有关系:
G = E 2 ( 1 + v ) G=\cfrac{E}{2(1+v)} G=2(1+v)E

胁变与胁强的关系

综合胡克定律,可得到胁强 σ i j \sigma_{ij} σij到胁变 ε i j p \varepsilon_{ij}^p εijp的本构关系:
{ ε 11 p = + 1 E σ 11 − v E σ 22 − v E σ 33 ε 22 p = − v E σ 11 + 1 E σ 22 − v E σ 33 ε 33 p = − v E σ 11 − v E σ 22 + 1 E σ 33 { ε 12 p = ε 21 p = 1 2 G σ 12 = 1 2 G σ 21 ε 23 p = ε 32 p = 1 2 G σ 23 = 1 2 G σ 32 ε 31 p = ε 13 p = 1 2 G σ 31 = 1 2 G σ 13 \left \{ \begin{array}{c} \varepsilon_{11}^p=+\cfrac{1}{E}\sigma_{11}-\cfrac{v}{E}\sigma_{22}-\cfrac{v}{E}\sigma_{33} \\ \varepsilon_{22}^p=-\cfrac{v}{E}\sigma_{11}+\cfrac{1}{E}\sigma_{22}-\cfrac{v}{E}\sigma_{33} \\ \varepsilon_{33}^p=-\cfrac{v}{E}\sigma_{11}-\cfrac{v}{E}\sigma_{22}+\cfrac{1}{E}\sigma_{33} \end{array} \right. \\ \left \{ \begin{array}{c} \varepsilon_{12}^p=\varepsilon_{21}^p=\cfrac{1}{2G}\sigma_{12}=\cfrac{1}{2G}\sigma_{21} \\ \varepsilon_{23}^p=\varepsilon_{32}^p=\cfrac{1}{2G}\sigma_{23}=\cfrac{1}{2G}\sigma_{32} \\ \varepsilon_{31}^p=\varepsilon_{13}^p=\cfrac{1}{2G}\sigma_{31}=\cfrac{1}{2G}\sigma_{13} \end{array} \right. ε11p=+E1σ11Evσ22Evσ33ε22p=Evσ11+E1σ22Evσ33ε33p=Evσ11Evσ22+E1σ33 ε12p=ε21p=2G1σ12=2G1σ21ε23p=ε32p=2G1σ23=2G1σ32ε31p=ε13p=2G1σ31=2G1σ13
同理可得到胁变 ε i j p \varepsilon_{ij}^p εijp到胁强 σ i j \sigma_{ij} σij的本构关系:
{ σ 11 = λ Θ p + 2 G ε 11 p σ 22 = λ Θ p + 2 G ε 22 p σ 33 = λ Θ p + 2 G ε 33 p { σ 12 = 2 G ε 12 p σ 23 = 2 G ε 23 p σ 31 = 2 G ε 31 p \left \{ \begin{array}{c} \sigma_{11}=\lambda\Theta^p+2G\varepsilon_{11}^p \\ \sigma_{22}=\lambda\Theta^p+2G\varepsilon_{22}^p \\ \sigma_{33}=\lambda\Theta^p+2G\varepsilon_{33}^p \end{array} \right. \\ \left \{ \begin{array}{c} \sigma_{12}=2G\varepsilon_{12}^p \\ \sigma_{23}=2G\varepsilon_{23}^p \\ \sigma_{31}=2G\varepsilon_{31}^p \end{array} \right. σ11=λΘp+2Gε11pσ22=λΘp+2Gε22pσ33=λΘp+2Gε33p σ12=2Gε12pσ23=2Gε23pσ31=2Gε31p
其中 λ = v ( 1 + v ) ( 1 − 2 v ) E \lambda=\cfrac{v}{(1+v)(1-2v)}E λ=(1+v)(12v)vE为拉密模量;上述方程也可以简化为以下形式:
ε i j p = 1 2 G ( σ i j − δ i j v 1 + v Θ p ) σ i j = 2 G ε i j p + δ i j λ Θ p \varepsilon_{ij}^p=\cfrac{1}{2G}\left(\sigma_{ij}-\delta_{ij}\cfrac{v}{1+v}\Theta^p\right) \\ \sigma_{ij}=2G\varepsilon_{ij}^p+\delta_{ij}\lambda\Theta^p εijp=2G1(σijδ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值