流体力学笔记


流体按流线速度场性质可分为以下几类:

  • 稳恒流体: ∂ v ∂ t = 0 \cfrac{\partial \boldsymbol{v}}{\partial t}=0 tv=0,速度场与时间无关的流体,此时流线与迹线重合;
  • 不可压缩流体: ∇ ⋅ v = Θ ˙ = 0 \nabla\cdot \boldsymbol{v}=\dot \Theta=0 v=Θ˙=0,散度处处为零,体胀系数与体胀速率为零,密度不变的流体,一般来说当流速远小于流体扰动传播速度(声速)时可忽略密度的变化而近似视为不可压缩流体;
  • 无旋流体: ω = 1 2 ∇ × v = 0 \boldsymbol{\omega}=\cfrac{1}{2}\nabla\times\boldsymbol{v}=0 ω=21×v=0,旋度与环流量处处为零的流体,此时速度场可以表示为某一标量势 φ \varphi φ的梯度 v = ∇ φ \boldsymbol{v}=\nabla\varphi v=φ

特别的,对于不可压缩、无旋的稳恒流体,流体的速度场可由拉普拉斯方程解出 ∇ 2 φ = 0 \nabla^2\varphi=0 2φ=0

流体按内胁强性质又可分为以下两类:

  • 无黏性流体:胁强只有等于压强的正胁强;
  • 黏性流体:胁强同时包括压强与胁变有关的切胁强;

通常把不可压缩的无黏性流体称为理想流体;

流体的速度场分析

迹线与流线

流体速度场有两种描述方式:

拉格朗日描述方式仿照固体弹性力学,以质点初始位矢 r 0 \boldsymbol{r}_0 r0与时间 t t t为变量描述速度场 v ( r 0 , t ) \boldsymbol{v}(\boldsymbol{r}_0,t) v(r0,t),描述的是各个质点的运动轨迹,因此方程为:
d r d t = v ( r 0 , t ) \cfrac{\text{d}\boldsymbol{r}}{\text{d}t}=\boldsymbol{v}(\boldsymbol{r}_0,t) dtdr=v(r0,t)
欧拉描述方式以质点实时位矢 r \boldsymbol{r} r与时间 t t t为变量描述速度场 v ( r , t ) \boldsymbol{v}(\boldsymbol{r},t) v(r,t),描述的是当前时刻的速度场,因此方程为 d r ∥ v ( r , t ) \text{d}\boldsymbol{r}\|\boldsymbol{v}(\boldsymbol{r},t) drv(r,t)
d x v x ( x , y , z , t ) = d y v y ( x , y , z , t ) = d z v z ( x , y , z , t ) \cfrac{\text{d}x}{v_x(x,y,z,t)}=\cfrac{\text{d}y}{v_y(x,y,z,t)}=\cfrac{\text{d}z}{v_z(x,y,z,t)} vx(x,y,z,t)dx=vy(x,y,z,t)dy=vz(x,y,z,t)dz
实时位矢又可表示为时间的函数 r ( r 0 , t ) \boldsymbol{r}(\boldsymbol{r}_0,t) r(r0,t),因此欧拉方式又可表示为 v ( r ( r 0 , t ) , t ) \boldsymbol{v}(\boldsymbol{r}(\boldsymbol{r}_0,t),t) v(r(r0,t),t);虽然速度有两种表示方式,但加速度描述的是同一质点的速度变化率,因此只有一种描述方式 a ( r 0 , t ) \boldsymbol{a}(\boldsymbol{r}_0,t) a(r0,t),用两种方式得到加速度的方程为:
a ( r 0 , t ) = d v ( r 0 , t ) d t = ∂ v ( r 0 , t ) ∂ t = d v ( r ( r 0 , t ) , t ) d t = ∂ v ∂ t + v ⋅ ∇ r v \boldsymbol{a}(\boldsymbol{r}_0,t)=\cfrac{\text{d}\boldsymbol{v}(\boldsymbol{r}_0,t)}{\text{d}t}=\cfrac{\partial \boldsymbol{v}(\boldsymbol{r}_0,t)}{\partial t} \\ =\cfrac{\text{d}\boldsymbol{v}(\boldsymbol{r}(\boldsymbol{r}_0,t),t)}{\text{d}t}=\cfrac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v}\cdot\nabla_{\boldsymbol{r}} \boldsymbol{v} a(r0,t)=dtdv(r0,t)=tv(r0,t)=dtdv(r(r0,t),t)=tv+vrv
一般地,对于任一物理量 u ( r , t ) \boldsymbol{u}(\boldsymbol{r},t) u(r,t),其对于同一质点的变化率都有:
d u d t ( r 0 , t ) = ∂ u ∂ t + v ( r , t ) ⋅ ∇ r u \cfrac{\text{d}\boldsymbol{u}}{\text{d}t}(\boldsymbol{r}_0,t)=\cfrac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{v}(\boldsymbol{r},t)\cdot\nabla_{\boldsymbol{r}} \boldsymbol{u} dtdu(r0,t)=tu+v(r,t)ru
其中 d d t \cfrac{\text{d}}{\text{d}t} dtd称为实体变化率, ∂ ∂ t \cfrac{\partial}{\partial t} t称为当地变化率,两者之差 v ⋅ ∇ \boldsymbol{v}\cdot\nabla v称为漂移变化率。

流线速度场的一般分析

仿照固体弹性力学将流线速度场关于实时位矢 d r \text{d}\boldsymbol{r} dr的小量 d v \text{d}\boldsymbol{v} dv,分解为对称胁变 d v s \text{d}\boldsymbol{v}_s dvs与反对称旋转 d v a \text{d}\boldsymbol{v}_a dva两部分:
d v ≈ ( ∂ v ∂ r ) 0 d r = d v s + d v a d v s = 1 2 ( ( ∂ v ∂ r ) + ( ∂ v ∂ r ) T ) 0 d r , d v a = 1 2 ( ∇ r × v ) 0 × d r \text{d}\boldsymbol{v}\approx \left(\cfrac{\partial \boldsymbol{v}}{\partial \boldsymbol{r}}\right)_0\text{d}\boldsymbol{r}=\text{d}\boldsymbol{v}_s+\text{d}\boldsymbol{v}_a \\ \text{d}\boldsymbol{v}_s=\cfrac{1}{2}\left(\left(\cfrac{\partial \boldsymbol{v}}{\partial \boldsymbol{r}}\right)+\left(\cfrac{\partial \boldsymbol{v}}{\partial \boldsymbol{r}}\right)^T\right)_0\text{d}\boldsymbol{r},\quad\text{d}\boldsymbol{v}_a=\cfrac{1}{2}\left(\nabla_{\boldsymbol{r}}\times\boldsymbol{v}\right)_0\times\text{d}\boldsymbol{r} dv(rv)0dr=dvs+dvadvs=21 (rv)+(rv)T 0dr,dva=21(r×v)0×dr
其中对称部分的矩阵正是胁变矩阵的时间变化率,反对称部分的矩阵正是旋转角的时间变化率:
∇ r ⋅ v = Θ ˙ ω = 1 2 ∇ r × v = φ ˙ \nabla_{\boldsymbol{r}}\cdot\boldsymbol{v}=\dot\Theta \\ \boldsymbol{\omega}=\cfrac{1}{2}\nabla_{\boldsymbol{r}}\times \boldsymbol{v}=\dot \varphi rv=Θ˙ω=21r×v=φ˙

流管、流量、环流量、涡索

流管与流量

任意一闭合曲线,通过该闭合曲线上每一点做流线,这些流线形成的管状曲面称为流管;流管内的质点不可能通过管壁流向管外而流管外的质点也不可能通过管壁流向管内;

流量指流过流管截面的单位时间流体质量:
Q = ∬ ρ v ( r , t ) ⋅ d S Q=\iint \rho\boldsymbol{v}(\boldsymbol{r},t)\cdot \text{d}\boldsymbol{S} Q=ρv(r,t)dS
当流管面积趋于无穷小时,流量有: lim ⁡ S → 0 Q S = v ⋅ n \lim_{S\to 0}\cfrac{Q}{S}=\boldsymbol{v}\cdot \boldsymbol{n} limS0SQ=vn
在这里插入图片描述
特别地,对于不可压缩、无旋、稳恒的二维流体(指速度场 v ( x , y ) \boldsymbol{v}(x,y) v(x,y)在第三维度 z z z上没有变化,且处处平行 x O y xOy xOy平面),设其速度势由一族曲线“ φ ( r ) = \varphi(\boldsymbol{r})= φ(r)=常数”组成,流线由一族曲线“ ψ ( r ) = \psi(\boldsymbol{r})= ψ(r)=常数”组成,且速度势满足二维拉普拉斯方程 ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 = 0 \cfrac{\partial^2 \varphi}{\partial x^2}+\cfrac{\partial^2 \varphi}{\partial y^2}=0 x22φ+y22φ=0;容易发现 φ \varphi φ ψ \psi ψ为某一 x O y xOy xOy平面某一复解析函数 f ( x , y ) f(x,y) f(x,y)的共轭调和函数:
f ( x , y ) = φ ( x , y ) + i ψ ( x , y ) f(x,y)=\varphi(x,y)+\text{i}\psi(x,y) f(x,y)=φ(x,y)+iψ(x,y)
其相互满足Cauchy-Riemann方程:
∂ φ ∂ x = ∂ ψ ∂ y , ∂ φ ∂ y = − ∂ ψ ∂ x \cfrac{\partial\varphi}{\partial x}=\cfrac{\partial\psi}{\partial y},\cfrac{\partial\varphi}{\partial y}=-\cfrac{\partial\psi}{\partial x} xφ=yψ,yφ=xψ
并且梯度相互垂直:
∇ φ ⋅ ∇ ψ = 0 \nabla\varphi\cdot \nabla\psi=0 φψ=0
如图, ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)的曲线路径微元为 d s = ( d x , d y ) \text{d}\boldsymbol{s}=(\text{d}x,\text{d}y) ds=(dx,dy),切向单位向量为 t = ( d x d s , d y d s ) \boldsymbol{t}=(\cfrac{\text{d}x}{\text{d}s},\cfrac{\text{d}y}{\text{d}s}) t=(dsdx,dsdy),法向单位向量为 n = ( d y d s , − d x d s ) \boldsymbol{n}=(\cfrac{\text{d}y}{\text{d}s},-\cfrac{\text{d}x}{\text{d}s}) n=(dsdy,dsdx);则速度场的法向分量 v n v_n vn
v n = v ⋅ n = ∂ φ ∂ x d y d s − ∂ φ ∂ y d x d s = ∂ ψ ∂ y d y d s + ∂ ψ ∂ x d x d s v_n=\boldsymbol{v}\cdot\boldsymbol{n}=\cfrac{\partial\varphi}{\partial x}\cfrac{\text{d}y}{\text{d}s}-\cfrac{\partial\varphi}{\partial y}\cfrac{\text{d}x}{\text{d}s}=\cfrac{\partial\psi}{\partial y}\cfrac{\text{d}y}{\text{d}s}+\cfrac{\partial\psi}{\partial x}\cfrac{\text{d}x}{\text{d}s} vn=vn=xφdsdyyφdsdx=yψdsdy+xψdsdx
二维流体沿该曲线的流量为:
Q = ∫ ( x 1 , y 1 ) ( x 2 , y 2 ) v n d s = ∫ ( x 1 , y 1 ) ( x 2 , y 2 ) ( ∂ ψ ∂ y d y + ∂ ψ ∂ x d x ) = ψ 2 − ψ 1 Q=\int_{(x_1,y_1)}^{(x_2,y_2)}v_n\text{d}s=\int_{(x_1,y_1)}^{(x_2,y_2)}\left(\cfrac{\partial\psi}{\partial y}\text{d}y+\cfrac{\partial\psi}{\partial x}\text{d}x\right) \\ =\psi_2-\psi_1 Q=(x1,y1)(x2,y2)vnds=(x1,y1)(x2,y2)(yψdy+xψdx)=ψ2ψ1
因此不可压缩、无旋、稳恒的二维流体,其两流线间的流量为流函数 ψ \psi ψ之差(这里的流量为线密度,转换为真正的流量还需乘上 z z z方向的长度)。
在这里插入图片描述
环流量与涡索

任意一闭合曲线,沿该曲线的流线速度积分称为环流量:
Γ = ∮ C v ( r , t ) ⋅ d l = ∬ ∇ r × v ( r , t ) ⋅ d S \Gamma=\oint_C \boldsymbol{v}(\boldsymbol{r},t)\cdot \text{d}\boldsymbol{l}=\iint \nabla_{\boldsymbol{r}}\times\boldsymbol{v}(\boldsymbol{r},t)\cdot \text{d}\boldsymbol{S} Γ=Cv(r,t)dl=r×v(r,t)dS
当曲线长度趋于无穷小时,环流量有: lim ⁡ S → 0 Γ S = 2 ω ⋅ n \lim_{S\to 0}\cfrac{\Gamma}{S}=2\boldsymbol{\omega}\cdot \boldsymbol{n} limS0SΓ=2ωn

类似流线,做与 ω \boldsymbol{\omega} ω相切的线为涡索,涡索将穿过一系列的流线漩涡,且由于 ∇ ⋅ ∇ × v ≡ 0 \nabla\cdot\nabla\times\boldsymbol{v} \equiv 0 ×v0涡索场为无源场,即涡索只会形成首尾相连的环或终止于边界而没有源与汇;
在这里插入图片描述

连续性方程

对于任意物理量,单位时间上其体积 V V V内的增量等于外面积 S S S的流量: ∂ ∂ t ( ∭ V ρ d v ) = ∯ ρ v ⋅ d s = − ∭ V ∇ ⋅ ( ρ v ) d v \cfrac{\partial}{\partial t}\left(\iiint_V \rho\text{d}v\right)=\oiint \rho \boldsymbol{v}\cdot\text{d}\boldsymbol{s}=-\iiint_V \nabla\cdot(\rho\boldsymbol{v})\text{d}v t(Vρdv)= ρvds=V(ρv)dv,即为连续性方程:
∂ ρ ∂ t + ∇ ⋅ ( ρ v ) = 0 \cfrac{\partial \rho}{\partial t}+\nabla\cdot(\rho\boldsymbol{v})=0 tρ+(ρv)=0
又有 ∇ ⋅ ( ρ v ) = ρ ∇ ⋅ v + v ⋅ ∇ ρ \nabla\cdot(\rho\boldsymbol{v})=\rho\nabla\cdot\boldsymbol{v}+\boldsymbol{v}\cdot\nabla\rho (ρv)=ρv+vρ,并将密度表示为实体变化率 d ρ d t ( r 0 , t ) \cfrac{\text{d}\rho}{\text{d}t}(\boldsymbol{r}_0,t) dtdρ(r0,t),则连续性方程又可表示为:
d ρ d t + ρ ∇ ⋅ v = 0 \cfrac{\text{d} \rho}{\text{d} t}+\rho\nabla\cdot\boldsymbol{v}=0 dtdρ+ρv=0

特别的,对于稳恒流体的简单流管,流体时不变 d ρ d t = 0 \cfrac{\text{d}\rho}{\text{d}t}=0 dtdρ=0,且流管足够细足以忽略截面上速度的变化,此时连续性方程变为:
ρ 1 v n 1 S 1 = ρ 2 v n 2 S 2 \rho_1v_{n1}S_1=\rho_2v_{n2}S_2 ρ1vn1S1=ρ2vn2S2

无黏性流体动力学

无黏性流体只有压强 p p p作为正胁强:
σ 11 = σ 22 = σ 33 = − p σ 12 = σ 23 = σ 31 = 0 \sigma_{11}=\sigma_{22}=\sigma_{33}=-p \\ \sigma_{12}=\sigma_{23}=\sigma_{31}=0 σ11=σ22=σ33=pσ12=σ23=σ31=0
此时任意方向的胁强都只有正胁强分量且大小等于压强: σ = [ σ ] 3 × 3 n = − p n \boldsymbol{\sigma}=[\boldsymbol{\sigma}]_{3\times 3}\boldsymbol{n}=-p\boldsymbol{n} σ=[σ]3×3n=pn

静力学方程

在这里插入图片描述
力学方程由力矢平衡与力矩平衡两部分构成,由于切胁强为零因此力矩平衡自动满足,现考虑力矢平衡方程:

设流体受到外力只有体积力,总外力的体密度为 f v = [ f x , f y , f z ] T \boldsymbol{f}_v=[f_x,f_y,f_z]^T fv=[fx,fy,fz]T,并仿照固体弹性力学写出微小体的静力学方程: ( ∂ σ 11 ∂ x + ∂ σ 12 ∂ y + ∂ σ 13 ∂ z + f x ) d v = ( − ∂ p ∂ x + f x ) d v = 0 \left(\cfrac{\partial \sigma_{11}}{\partial x}+\cfrac{\partial \sigma_{12}}{\partial y}+\cfrac{\partial \sigma_{13}}{\partial z}+f_x\right)\text{d}v=\left(-\cfrac{\partial p}{\partial x}+f_x\right)\text{d}v=0 (xσ11+yσ12+zσ13+fx)dv=(xp+fx)dv=0,即:
f v − ∇ p = 0 \boldsymbol{f}_v-\nabla p=0 fvp=0
因此无黏性流体的平衡条件为作用于流体的外体积力必须是保守力;

对于可压缩流体密度会发生改变,此时体积力与密度有关 f v ( ρ ) \boldsymbol{f}_v(\rho) fv(ρ)也是一个变量,因此有 v 、 p 、 ρ \boldsymbol{v}、p、\rho vpρ五个变量,除了静力学三个方向的方程还需要联立连续性方程与物态方程 f ( p , ρ ) = 0 f(p,\rho)=0 f(p,ρ)=0解出。

动力学方程

当流体处于非平衡态时,需要考虑其加速度,设流体质量体密度为 ρ \rho ρ,静力方程被修正为:
f v − ∇ p = ρ d v d t \boldsymbol{f}_v-\nabla p=\rho\cfrac{\text{d}\boldsymbol{v}}{\text{d}t} fvp=ρdtdv
将实体变化率转换为当地变化率 d v d t = ∂ v ∂ t + v ⋅ ∇ v \cfrac{\text{d}\boldsymbol{v}}{\text{d}t}=\cfrac{\partial \boldsymbol{v}}{\partial t}+\boldsymbol{v}\cdot\nabla \boldsymbol{v} dtdv=tv+vv,又有 v ⋅ ∇ v = ∇ ( 1 2 v 2 ) − v × ( ∇ × v ) \boldsymbol{v}\cdot\nabla \boldsymbol{v}=\nabla\left(\cfrac{1}{2}v^2\right)-\boldsymbol{v}\times(\nabla\times\boldsymbol{v}) vv=(21v2)v×(×v),因此动力学方程可表示为以下形式(欧拉方程):
ρ ∂ v ∂ t − ρ v × ( ∇ × v ) + ρ ∇ ( 1 2 v 2 ) + ∇ p = f v \rho\cfrac{\partial \boldsymbol{v}}{\partial t}-\rho\boldsymbol{v}\times(\nabla\times\boldsymbol{v})+\rho\nabla\left(\cfrac{1}{2}v^2\right)+\nabla p=\boldsymbol{f}_v ρtvρv×(×v)+ρ(21v2)+p=fv
同理有 v 、 p 、 ρ \boldsymbol{v}、p、\rho vpρ五个变量,除了动力学三个方向的方程还需要联立连续性方程与物态方程 f ( p , ρ ) = 0 f(p,\rho)=0 f(p,ρ)=0解出。

特殊流体的欧拉方程

理想稳恒流体(伯努利定理1)

设无黏性流体不可压缩、稳恒、体积力为保守力且 f v = − ∇ V \boldsymbol{f}_v=-\nabla V fv=V,此时欧拉方程可表示为:
− ρ v × ( ∇ × v ) + ∇ ( 1 2 ρ v 2 + p + V ) = 0 -\rho\boldsymbol{v}\times(\nabla\times\boldsymbol{v})+\nabla\left(\cfrac{1}{2}\rho v^2+p+V\right)=\boldsymbol{0} ρv×(×v)+(21ρv2+p+V)=0
将该欧拉方程沿某一流线积分,由于 v × ( ∇ × v ) \boldsymbol{v}\times(\nabla\times\boldsymbol{v}) v×(×v)垂直流线方向( v \boldsymbol{v} v方向)积分为零,因此沿流线有伯努利定理:“ 1 2 ρ v 2 + p + V = \cfrac{1}{2}\rho v^2+p+V= 21ρv2+p+V=常数”,但注意对于不同的流线常数也不一样;

无旋理想稳恒流体(伯努利定理2)

设无黏性流体不可压缩、稳恒、无旋、体积力为保守力且 f v = − ∇ V \boldsymbol{f}_v=-\nabla V fv=V,此时欧拉方程可表示为:
∇ ( 1 2 ρ v 2 + p + V ) = 0 \nabla\left(\cfrac{1}{2}\rho v^2+p+V\right)=\boldsymbol{0} (21ρv2+p+V)=0
因此流体处处有伯努利定理:“ 1 2 ρ v 2 + p + V = \cfrac{1}{2}\rho v^2+p+V= 21ρv2+p+V=常数”,常数在整个流体中一致而与流线无关;

无旋理想的非稳恒流体(压力方程)

设无黏性流体不可压缩、无旋、体积力为保守力且 f v = − ∇ V \boldsymbol{f}_v=-\nabla V fv=V,将流速用标量势表示 v = ∇ φ \boldsymbol{v}=\nabla \varphi v=φ,此时欧拉方程可表示为:
∇ ( ρ ∂ φ ∂ t + 1 2 ρ ( ∇ φ ) 2 + p + V ) = 0 \nabla\left(\rho\cfrac{\partial \varphi}{\partial t}+\cfrac{1}{2}\rho\left(\nabla\varphi\right)^2+p+V\right)=\boldsymbol{0} (ρtφ+21ρ(φ)2+p+V)=0
因此流体处处有压力方程:“ ρ ∂ φ ∂ t + 1 2 ρ ( ∇ φ ) 2 + p + V = f ( t ) \rho\cfrac{\partial \varphi}{\partial t}+\cfrac{1}{2}\rho\left(\nabla\varphi\right)^2+p+V=f(t) ρtφ+21ρ(φ)2+p+V=f(t)”,此时 f ( t ) f(t) f(t)时变但在整个流体中一致而与流线无关;

理想的非稳恒流体(开尔文环流定理)

设无黏性流体不可压缩、体积力为保守力且 f v = − ∇ V \boldsymbol{f}_v=-\nabla V fv=V,并设 C C C为任一闭合曲线且会随曲线上的质点漂流,则该流体沿 C C C的环流量实体变化率有:
d Γ d t = ∮ C d v d t ⋅ d l + ∮ C v ⋅ d d t ( d l ) \cfrac{\text{d}\Gamma}{\text{d}t}=\oint_C \cfrac{\text{d}\boldsymbol{v}}{\text{d}t}\cdot\text{d}\boldsymbol{l}+\oint_C \boldsymbol{v}\cdot\cfrac{\text{d}}{\text{d}t}(\text{d}\boldsymbol{l}) dtdΓ=Cdtdvdl+Cvdtd(dl)
其中右边第一项由于 d v d t = − ∇ ( p ρ + V ρ ) \cfrac{\text{d}\boldsymbol{v}}{\text{d}t}=-\nabla\left(\cfrac{p}{\rho}+\cfrac{V}{\rho}\right) dtdv=(ρp+ρV)因此 ∮ C d v d t ⋅ d l = − ∮ C ∇ ( p ρ + V ρ ) ⋅ d l = − Δ ( p ρ + V ρ ) = 0 \oint_C \cfrac{\text{d}\boldsymbol{v}}{\text{d}t}\cdot\text{d}\boldsymbol{l}=-\oint_C\nabla\left(\cfrac{p}{\rho}+\cfrac{V}{\rho}\right)\cdot\text{d}\boldsymbol{l}=-\Delta(\cfrac{p}{\rho}+\cfrac{V}{\rho})=0 Cdtdvdl=C(ρp+ρV)dl=Δ(ρp+ρV)=0;右边第二项 ∮ C v ⋅ d d t ( d l ) = ∮ v ⋅ d ( d l d t ) = ∮ v ⋅ d v = Δ ( 1 2 v 2 ) = 0 \oint_C \boldsymbol{v}\cdot\cfrac{\text{d}}{\text{d}t}(\text{d}\boldsymbol{l})=\oint \boldsymbol{v}\cdot\text{d}\left(\cfrac{\text{d}\boldsymbol{l}}{\text{d}t}\right)=\oint\boldsymbol{v}\cdot\text{d}\boldsymbol{v}=\Delta\left(\cfrac{1}{2}v^2\right)=0 Cvdtd(dl)=vd(dtdl)=vdv=Δ(21v2)=0;因此有:
d Γ d t = 0 \cfrac{\text{d}\Gamma}{\text{d}t}=0 dtdΓ=0
即开尔文环流定理:理想非稳恒流体中任意随流体漂移的闭合曲线,其环流量不随时间变化。

流体中的小振动传播

研究小扰动(胁变变化率转化为密度的变化)在流体中的传播,此时必须考虑流体的可压缩性;设流体初始态密度为 ρ 0 \rho_0 ρ0,由于小扰动造成了小量 d ρ \text{d}\rho dρ的变化,流速 v \boldsymbol{v} v远小于扰动传播速度(声速)也是小量,则欧拉方程约去二阶小量后的线性近似为:
ρ 0 ∂ v ∂ t + ∇ p = f v \rho_0\cfrac{\partial \boldsymbol{v}}{\partial t}+\nabla p=\boldsymbol{f}_v ρ0tv+p=fv
同理连续性方程约去二阶小量后的线性近似为:
∂ ρ ∂ t + ρ 0 ∇ ⋅ v = 0 \cfrac{\partial \rho}{\partial t}+\rho_0\nabla\cdot\boldsymbol{v}=0 tρ+ρ0v=0
由物态方程 f ( ρ , p ) = 0 f(\rho,p)=0 f(ρ,p)=0又可得到其他参量不变时压强与密度小量间的变化率 ( d p d ρ ) 0 = f ρ f p \left(\cfrac{\text{d}p}{\text{d} \rho}\right)_0=\cfrac{f_\rho}{f_p} (dρdp)0=fpfρ,因此有:
∇ p = ( d p d ρ ) 0 ∇ ρ \nabla p=\left(\cfrac{\text{d}p}{\text{d} \rho}\right)_0\nabla\rho p=(dρdp)0ρ
联立上三式并约去变量 v 、 p \boldsymbol{v}、p vp,得到关于 ρ \rho ρ的波动方程:
∂ 2 ρ ∂ t 2 = ( d p d ρ ) 0 ∇ 2 ρ − ∇ ⋅ f v \cfrac{\partial^2 \rho}{\partial t^2}=\left(\cfrac{\text{d}p}{\text{d} \rho}\right)_0\nabla^2\rho-\nabla\cdot\boldsymbol{f}_v t22ρ=(dρdp)02ρfv
其中 u = ( d p d ρ ) 0 u=\sqrt{\left(\cfrac{\text{d}p}{\text{d} \rho}\right)_0} u=(dρdp)0 即为小扰动在流体中的传播速度(声速);以空气为例,并把声振动视为绝热过程,则由物态方程可得到声速 u = γ p 0 ρ 0 u=\sqrt{\gamma\cfrac{p_0}{\rho_0}} u=γρ0p0

黏性流体动力学

黏性流体除了压强 p p p产生的正胁强,还存在一个类似于胡克定理的由胁变产生的胁强 p i j p_{ij} pij,这部分产生了额外的切胁强与正胁强;不过与弹性体不同的是该部分胁强与胁变变化率 ε ˙ \dot\varepsilon ε˙有关而与其绝对值 ε \varepsilon ε无关,仿照弹性力学的胁强-胁变本构关系,写出一个流体的近似线性本构关系:
p i j = 2 η ε ˙ i j + δ i j β Θ ˙ p_{ij}=2\eta \dot \varepsilon_{ij}+\delta_{ij}\beta\dot \Theta pij=2ηε˙ij+δijβΘ˙
其中 η \eta η为黏性系数,胁变变化率由速度场对称部分矩阵给出 ε ˙ i j = 1 2 ( ( ∂ v ∂ r ) + ( ∂ v ∂ r ) T ) i j \dot\varepsilon_{ij}=\cfrac{1}{2}\left(\left(\cfrac{\partial \boldsymbol{v}}{\partial \boldsymbol{r}}\right)+\left(\cfrac{\partial \boldsymbol{v}}{\partial \boldsymbol{r}}\right)^T\right)_{ij} ε˙ij=21 (rv)+(rv)T ij,体胀系数变化率 Θ ˙ = ∇ ⋅ v \dot \Theta=\nabla\cdot\boldsymbol{v} Θ˙=v;特别的,当流体不可压缩时 ∇ ⋅ v = Θ ˙ = 0 \nabla\cdot\boldsymbol{v}=\dot \Theta=0 v=Θ˙=0,此时只会产生切胁强而不会产生正胁强:
p i j = 2 η ε ˙ i j p_{ij}=2\eta \dot \varepsilon_{ij} pij=2ηε˙ij
总胁强为:
σ i j = p δ i j + p i j \sigma_{ij}=p\delta_{ij}+p_{ij} σij=pδij+pij

Navier-Stokes方程

仿照固体弹性力学的动力学方程 ( ∂ σ 11 ∂ x + ∂ σ 12 ∂ y + ∂ σ 13 ∂ z + f x ) d v = ρ d v x d t d v \left(\cfrac{\partial \sigma_{11}}{\partial x}+\cfrac{\partial \sigma_{12}}{\partial y}+\cfrac{\partial \sigma_{13}}{\partial z}+f_x\right)\text{d}v=\rho\cfrac{\text{d}v_x}{\text{d}t}\text{d}v (xσ11+yσ12+zσ13+fx)dv=ρdtdvxdv,代入黏性流体的胁强-胁变本构方程,可得到黏性流体的动力学方程(Navier-Stokes方程):
ρ d v d t = f v − ∇ p + η ∇ 2 v + ( η + β ) ∇ ( ∇ ⋅ v ) \rho\cfrac{\text{d}\boldsymbol{v}}{\text{d}t}=\boldsymbol{f}_v-\nabla p+\eta\nabla^2\boldsymbol{v}+(\eta+\beta)\nabla(\nabla\cdot\boldsymbol{v}) ρdtdv=fvp+η2v+(η+β)(v)
实体变化率用当地变化率表示,动力学方程又有:
ρ ∂ v ∂ t + ρ v ⋅ ∇ v = f v − ∇ p + η ∇ 2 v + ( η + β ) ∇ ( ∇ ⋅ v ) \rho\cfrac{\partial \boldsymbol{v}}{\partial t}+\rho\boldsymbol{v}\cdot\nabla \boldsymbol{v}=\boldsymbol{f}_v-\nabla p+\eta\nabla^2\boldsymbol{v}+(\eta+\beta)\nabla(\nabla\cdot\boldsymbol{v}) ρtv+ρvv=fvp+η2v+(η+β)(v)

特别的,对于不可压缩、无旋的流体有 ∇ ⋅ v = 0 、 ∇ 2 v = 0 \nabla\cdot\boldsymbol{v}=0、\nabla^2\boldsymbol{v}=0 v=02v=0,黏性流体与无黏性流体的动力学方程一致,黏性不起作用;此时黏性流体与无黏性流体的区别体现在边界条件(黏性流体边界上速度为零,无黏性流体边界上存在切向速度),因此黏性流体与无黏性流体只在边界与其附近的边界层上不同,且黏性系数越小边界层越薄;

无量纲形式

有时需构建无量纲的动力学方程以比较不同尺寸模型间的动力学相似性;

以不可压缩、稳恒、无外力的黏性流体为例,此时Navier-Stokes方程简化为:
ρ v ⋅ ∇ v = − ∇ p + η ∇ 2 v \rho\boldsymbol{v}\cdot\nabla \boldsymbol{v}=-\nabla p+\eta\nabla^2\boldsymbol{v} ρvv=p+η2v
设流体速度场的几何基准值为 r 0 r_0 r0,速度基准值为 v 0 v_0 v0,压强基准值为 p 0 = ρ v 0 2 p_0=\rho v_0^2 p0=ρv02,无量纲物理量 r ′ 、 v ′ 、 p ′ \boldsymbol{r}'、\boldsymbol{v}'、p' rvp有:
r ′ = r r 0 , ∇ r ′ = r 0 ∇ r , v ′ = v v 0 , p ′ = p ρ v 0 2 \boldsymbol{r}'=\cfrac{\boldsymbol{r}}{r_0},\quad\nabla_{\boldsymbol{r}'}=r_0\nabla_{\boldsymbol{r}},\quad\boldsymbol{v}'=\cfrac{\boldsymbol{v}}{v_0},\quad p'=\cfrac{p}{\rho v_0^2} r=r0r,r=r0r,v=v0v,p=ρv02p
代入得无量纲形式的动力学方程:
v ′ ⋅ ∇ r ′ v ′ = − ∇ r ′ p ′ + 1 R e ∇ r ′ 2 v ′ \boldsymbol{v}'\cdot\nabla_{\boldsymbol{r}'} \boldsymbol{v}'=-\nabla_{\boldsymbol{r}'} p'+\cfrac{1}{Re}\nabla^2_{\boldsymbol{r}'}\boldsymbol{v}' vrv=rp+Re1r2v
其中 R e = v 0 a 0 ν Re=\cfrac{v_0a_0}{\nu} Re=νv0a0为雷诺数, ν = η ρ \nu=\cfrac{\eta}{\rho} ν=ρη为运动学黏性系数;当两种不同尺寸的流体模型雷诺数相近时,它们的运动学方程相近,称其是运动学相似的;一般而言,雷诺数越小,黏性越强越接近层流,流体越趋于稳定;雷诺数越大,稳定性越差越接近湍流;

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值