蒟蒻线性代数太烂了。。。这个逼题居然卡了半天才做出来,弱的不行啊。。。
矩阵快速幂,把n这个len位数拆成len次分段快速幂就可以了。
注意取模的数字m<=1e9,所以矩阵乘法运算时要先对乘数取模,防止中间运算结果太大溢出,坑爹啊
代码:
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#define MAXN 4
using namespace std;
typedef long long int LL;
int mod;
struct matrix
{
LL p[MAXN][MAXN];
}ans,tmp;
matrix operator*(matrix a,matrix b)
{
matrix c;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
c.p[i][j]=0;
for(int k=1;k<=3;k++)
c.p[i][j]=(c.p[i][j]+((a.p[i][k]%mod)*(b.p[k][j]%mod))%mod)%mod;
}
return c;
}
void cal(LL t,LL last) //从last-t/10计算到last
{
memset(tmp.p,0,sizeof(tmp.p));
tmp.p[1][1]=t;
tmp.p[2][1]=tmp.p[3][1]=tmp.p[2][2]=tmp.p[3][2]=tmp.p[3][3]=1;
LL y=last-t/10+1;
while(y)
{
if(y&1) ans=ans*tmp;
tmp=tmp*tmp;
y>>=1;
}
}
int main()
{
for(int i=1;i<=3;i++)
ans.p[i][i]=1;
LL n;
scanf("%lld%lld",&n,&mod);
LL t=10;
while(n>=t)
{
cal(t,t-1);
t*=10;
}
cal(t,n);
printf("%lld\n",ans.p[3][1]);
return 0;
}