题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705
网上的题解都不是很靠谱,我就来YY下自己的思路吧。。。
首先,对于1<=i<=N,gcd(i,N)的可能性解就是N的约数。那么这个题就是求Σgcd(i,N)=k,k是n的因数,等价于求Σgcd(i/k,N/k)=gcd(i',N/k)=1,即找出所有与N/k互质且小于等于N/k的i'的个数,这就转化到求欧拉函数的问题上来了。
所以这个题的做法是,sqrt(N)复杂度内枚举N的所有约数k,然后对phi(N/k)求和。
#include <iostream>
#include <stdio.h>
#include <cmath>
using namespace std;
typedef long long int LL;
LL sqrtn;
LL h(LL x)
{
LL ans=x;
for(LL i=2;i<=sqrtn;i++)
{
if(x%i==0)
{
ans=ans/i*(i-1);
while(x%i==0) x/=i;
}
}
if(x>1) ans=ans/x*(x-1);
return ans;
}
int main()
{
LL n,ans=0;
scanf("%lld",&n);
sqrtn=sqrt(n);
for(LL i=1;i<=sqrtn;i++) //枚举n的约数i
{
if(n%i==0)
{
ans+=i*h(n/i);
if(i*i<n) ans+=(n/i)*h(i);
}
}
printf("%lld\n",ans);
return 0;
}