题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1037
题目太神了,给跪。。。。
这题完全想不到dp的思路,网上的题解翻来翻去也没几个靠谱的,最终总算找到了个靠谱点的题解想明白了。。。
首先,我们把这个题目简化下,相当于给你n个0,m个1,要你排列它们,使得任意连续的序列中0个数和1的个数之差小于等于K
然后我们就用f[a][b][c][d]表示当前有a个0,b个1,0比1最多多k个,1比0最多多t个的方案数
dp过程中,每加入一个新的数,我们既可以加0,也可以加1。
加0的前提是剩下的数中有0,而且当前0比1多不到k个
加1的前提是剩下的数中有0,而且当前1比0多不到k个
最终我们再统计答案,把0比1多i个、1比0多j个的所有合法方案的个数加起来。
这就是这道题的全过程了
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#define MAXN 155
#define MAXM 22
#define MOD 12345678
using namespace std;
int f[MAXN][MAXN][MAXM][MAXM]; //f[a][b][c][d]=a个0,b个1,0比1最多多k个,1比0最多多t个的方案数
int n,m,K,ans;
int main()
{
scanf("%d%d%d",&n,&m,&K);
f[0][0][0][0]=1;
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=K;k++)
for(int t=0;t<=K;t++)
{
if(f[i][j][k][t])
{
if(i<n&&k<K) //新加入一个0
f[i+1][j][k+1][max(t-1,0)]=(f[i+1][j][k+1][max(t-1,0)]+f[i][j][k][t])%MOD;
if(j<m&&t<K) //新加入一个1
f[i][j+1][max(k-1,0)][t+1]=(f[i][j+1][max(k-1,0)][t+1]+f[i][j][k][t])%MOD;
}
}
int ans=0;
for(int i=0;i<=K;i++) //枚举0比1最多多i个
for(int j=0;j<=K;j++) //枚举1比0最多多j个
ans=(ans+f[n][m][i][j])%MOD;
printf("%d\n",ans);
return 0;
}