Description
今天是hidadz小朋友的生日,她邀请了许多朋友来参加她的生日party。 hidadz带着朋友们来到花园中,打算
坐成一排玩游戏。为了游戏不至于无聊,就座的方案应满足如下条件:对于任意连续的一段,男孩与女孩的数目之
差不超过k。很快,小朋友便找到了一种方案坐了下来开始游戏。hidadz的好朋友Susie发现,这样的就座方案其实
是很多的,所以大家很快就找到了一种,那么到底有多少种呢?热爱数学的hidadz和她的朋友们开始思考这个问题
…… 假设参加party的人中共有n个男孩与m个女孩,你是否能解答Susie和hidadz的疑问呢?由于这个数目可能很
多,他们只想知道这个数目除以12345678的余数。
Input
仅包含一行共3个整数,分别为男孩数目n,女孩数目m,常数k。
Output
应包含一行,为题中要求的答案。
Sample Input
1 2 1
Sample Output
1
Hint
n
,
m
≤
150
n , m ≤ 150
n,m≤150,
k
≤
20
k ≤ 20
k≤20。
首先yy出这是个DP。
确定子状态:
d
p
[
i
]
[
j
]
[
x
]
[
y
]
dp[i][j][x][y]
dp[i][j][x][y]表示前
i
+
j
i+j
i+j个人中,有
i
i
i个男孩和
j
j
j个女孩,所有后缀中男孩比女孩最多多
x
x
x个,所有后缀中女孩比男孩最多多
y
y
y个时的方案数。
然后珂以大力转移(转移方程见代码),转移时注意后缀中男女数量差的最大值不能超过k。
统计答案时,因为转移时满足男女数量差都不超过k的条件,所以只用统计所有后缀男女数量差不超过k的数量。
代码如下:
#include<stdio.h>
#include<cstring>
#include<algorithm>
#define re register int
using namespace std;
int read() {
re x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9') {
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9') {
x=10*x+ch-'0';
ch=getchar();
}
return x*f;
}
const int Size=155;
const int INF=1e9;
const int mod=12345678;
int n,m,k,dp[Size<<1][Size][25][25];
int main() {
n=read();
m=read();
k=read();
dp[0][0][0][0]=1;
for(re i=0; i<=n; i++) {
for(re j=0; j<=m; j++) {
for(re l=0; l<=k; l++) {
for(re p=0; p<=k; p++) {
if(!dp[i][j][l][p]) continue;
if(l+1<=k && i+1<=n) {
//在序列末端加入一个男孩
dp[i+1][j][l+1][max(p-1,0)]+=dp[i][j][l][p];
dp[i+1][j][l+1][max(p-1,0)]%=mod;
}
if(p+1<=k && j+1<=m) {
//加入一个女孩
dp[i][j+1][max(l-1,0)][p+1]+=dp[i][j][l][p];
dp[i][j+1][max(l-1,0)][p+1]%=mod;
}
}
}
}
}
int ans=0;
for(re i=0; i<=k; i++) {
for(re j=0; j<=k; j++) {
ans=(ans+dp[n][m][i][j])%mod;
}
}
printf("%d",ans);
return 0;
}