概述
在Ragflow的个人界面,有个API的菜单,然而,这个菜单仅提供了HTTP
的接口。翻阅代码发现,其中有一个Python_API的文档,藏在docs\references\python_api_reference.md
路径下。
仔细阅读该文档,发现存在以下一些问题:
-
没有中文文档
对本土开发者不太友好 -
各模块示例缺乏一致性
在每个模块的example中,有的是用id进行索引,有的是用name进行索引,存在一定一致性问题 -
存在语义理解歧义
部分英文名词并不准确,比如 dataset 实际是表示知识库,初看以为是数据集,用knowledge base显然更符合语义 -
部分接口存在问题
部分接口实际上是存在小问题,实测下来是不通的
因此本文将对该文档进行中文化梳理,主要根据原文档对主要功能模块的example进行梳理,对于详细参数,可根据英文标识进一步参考原文档。
原文档在线链接:https://github.com/infiniflow/ragflow/blob/main/docs/references/python_api_reference.md
文章目录
1. 依赖安装/密钥准备
使用python调用API接口,需要安装ragflow-sdk
依赖,可用pip进行安装:
pip install ragflow-sdk
之后,需要在API菜单中,创建一个API KEY
,复制该值,后续要用到。
2. 创建聊天(Create chat completion)
通过OpenAI的API为选择助理进行聊天。
这里的示例需要修改三个值:
- model:模型名称
- api_key:替换成自己的api_key,后文同理
- base_url:最后面一串为具体助手的
dialogId
,可直接从url中查看获取
可选参数:stream,用于指定是否采用流式输出
from openai import OpenAI
model = "deepseek-r1:1.5b"
client = OpenAI(api_key="ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm", base_url=f"http://localhost/api/v1/chats_openai/ec69b3f4fbeb11ef862c0242ac120002")
completion = client.chat.completions.create(
model=model,
messages=[
{
"role": "system", "content": "你是一个乐于助人的助手"},
{
"role": "user", "content": "你是谁?"},
],
stream=True
)
stream = True
if stream:
for chunk in completion:
print(chunk)
else:
print(completion.choices[0].message.content)
如果使用 Infinity
,作为检索引擎,实测会发现遇到报错,等待官方后续完善支持。
省略xxx条内容
2025-03-25 22:30:52 raise InfinityException(res.error_code, res.error_msg)
2025-03-25 22:30:52 infinity.common.InfinityException
3. 知识库管理(DATASET MANAGEMENT)
3.1 创建知识库(Create dataset)
创建一个名称为kb_1
的知识库
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.create_dataset(name="kb_1")
3.2 查询知识库(List datasets)
根据名称,查询知识库信息
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
# 查询所有知识库
for dataset in rag_object.list_datasets():
print(dataset)
# 根据name查询某一知识库
dataset = rag_object.list_datasets(name = "kb_1")
print(dataset[0])
3.3 删除知识库(Delete datasets)
删除指定知识库
只能根据知识库id进行删除,无name接口,id通过上一步查询得到
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
rag_object.delete_datasets(ids = ["50f80d7c099111f0ad0e0242ac120006"])
3.4 更新知识库配置(Update dataset)
更新已存在的知识库配置
这里原始文档给的示例存在小问题,rag_object.list_datasets
返回的是一个list,因此需要取出list中第一项,对于该问题,我提交了一个PR:Fix: python_api_reference.md update dataset bug
PR链接:https://github.com/infiniflow/ragflow/pull/6527
官方响应还是挺快的,晚上提交的,第二天上午review,下午就merge了。
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.update({
"chunk_method":"manual"})
4. 文件管理 (FILE MANAGEMENT WITHIN DATASET)
4.1 上传文件(Upload documents)
上传文件进入到kb_1
的知识库
两个主要参数:
- display_name:文件名
- blob:文件的二进制内容
from ragflow_sdk import RAGFlow
api_key = "ragflow-I0NmRjMWNhMDk3ZDExZjA5NTA5MDI0Mm"
base_url = "http://localhost:9380"
rag_object = RAGFlow(api_key=api_key, base_url=base_url)
dataset = rag_object.list_datasets(name="kb_1&