鹏程·盘古α常见问题-以及自己提问的问题笔记
-
- a. 模型训练与推理环境问题
-
- 1. 是否支持GPU+MindSpore推理或者训练?
- 2. 是否支持GPU+PyTorch推理或者训练?
- 3. 运行predict脚本的时候提示:AttributeError: 'Dropout' object has no attribute 'dropout_gen_mask'
- 4. 盘古-α模型实际用了多大的算力,训练了多长时间?
- 5. 13B的模型文件解压后大约有512个小的模型文件,利用“from mindspore import load_checkpoint”可以加载单个模型文件,但是第84和第327个模型文件解析失败,报错:google.protobuf.message.DecodeError: Field number 0 is illegal.
- 6. 盘古-α 2.6B在GPU上推理大概需要多大内存?
- b. 模型设计问题
- c. 模型压缩问题
- d. 下游任务问题
- e. 数据集问题
- f. 模型部署问题
- g. 产品对比
a. 模型训练与推理环境问题
1. 是否支持GPU+MindSpore推理或者训练?
目前已支持GPU+Mindspore对PanGu-α 2.6B+13B模型进行推理,详细参考[PanGu-Alpha-GPU] 暂不支持GPU+Mindspore进行模型训练
2. 是否支持GPU+PyTorch推理或者训练?
经过模型参数的跨框架转换后,生成的pytorch版鹏程盘古模型,支持GPU+PyTorch推理或者训练。
参考该项目[PanGuAlpha_pytorch]。
3. 运行predict脚本的时候提示:AttributeError: ‘Dropout’ object has no attribute ‘dropout_gen_mask’
推理时用不到dropout的,相关行可以注释掉。
4. 盘古-α模型实际用了多大的算力,训练了多长时间?
PanGU-α 200B模型用了鹏城云脑2的2048块华为昇腾910,跑了几周时间