3. 完全背包问题

与01背包问题不同点在于

01背包问题,每个物品只能取一次

完全背包问题,每个物品可以取无限次

状态表示:dp[i][j] 考虑前i个物品,选择的体积不超过j的最大价值

集合:所有考虑前i个物品,选择的体积不超过j的所有集合

边界:都为0

集合划分/状态计算

通过对最后一个不同点进行划分,可以分为不重不漏的多个子集

  • 没有选第i个物品,dp[i][j]=max(..,dp[i-1][j])
  • 选了第i个物品   dp[i][j]=max(...,dp[i-1][j-v[i]]+w[i],dp[i-1][j-2*v[i]]+2*w[i]].....)

朴素版


    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            for(int k=0;k*v[i]<=j;k++)
                dp[i][j]=max(dp[i][j],dp[i-1][j-k*v[i]]+k*w[i]);
        }    

我们可以看到这样子的时间复杂度最坏是O(n^3),所以需要优化

优化

优化分为两种 时间优化空间优化

时间优化

时间优化的思路是减少重复的操作

这里的重复操作在于

 如果我们每次j+=v[i],都要重新枚举一遍黄色的部分,这样子的时间复杂度太高了,而且没有用

那么我们如何确保,在所有子集可以被枚举的时候,又降维减小时间复杂度呢?

 对于重复的部分不需要重新枚举,因为前面的dp[i][j-v[i]]已经枚举过了

此时的dp[i][j-v[i]]就是前面所有子集的最大值

所以:让dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]+w[i])   就可以了

分别代表两个子集

  • 所有选了第i个物品的集合
  • 所有没有选第i个物品的集合

时间复杂度优化版本如下

    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            dp[i][j]=dp[i-1][j];
            if(j>=v[i])
                dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
        }    

空间优化

由01背包问题的思想来想,其实我们思考完全背包问题如何来优化

01背包问题

由于前面所有子集的值不能丢失,所以j是从后往前依次枚举的

完全背包问题

由于前面所有子集的值不能丢失,经过时间优化,我们发现前面两个子集的值,其实就是

  •  dp[i-1][j]
  •  dp[i][j-v[i]]+w[i]

只需要保证这两个值不丢失就行了,所以其实可以发现,从前往后枚举体积就可以了

#include <iostream>
#include <algorithm>
using namespace std;
const int N=1005;
int v[N],w[N];
int dp[N];
int main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
        {
            if(j>=v[i])
                dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
        }    
    cout<<dp[m];
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值