解析几何——计算向量与x的夹角

本文介绍了如何使用C++编程语言,通过输入两个点的坐标,计算向量AB与x轴正方向的夹角,利用向量积和余弦定理实现角度计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设这两点为A(x1,y1)和B(x2,y2),则向量AB的坐标为AB=(x2-x1,y2-y1)。

要求向量AB与x轴正方向的夹角,即求向量AB与x轴正方向的夹角θ。

根据向量积的定义,有:

AB·x=(x2-x1) * 1=x2-x1

又因为向量AB与x轴正方向的夹角θ的余弦值为:

cosθ=AB·x/|AB|

其中,|AB|为向量AB的长度。

因此,所求夹角θ的余弦值为:

cosθ=(x2-x1)/|AB|

以下是C++代码实现:

#include <iostream>
#include <cmath>

using namespace std;

int main() {
    double x1, y1, x2, y2;
    cout << "请输入第一个点的坐标(x1, y1): ";
    cin >> x1 >> y1;
    cout << "请输入第二个点的坐标(x2, y2): ";
    cin >> x2 >> y2;

    double ABx = x2 - x1;
    double ABy = y2 - y1;
    double ABlen = sqrt(ABx * ABx + ABy * ABy);
    double cosTheta = ABx / ABlen;
    double theta = acos(cosTheta); // 弧度制
    double thetaDeg = theta * 180.0 / M_PI; // 角度制

    cout << "向量AB与x轴正方向的夹角为:" << thetaDeg << "度" << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.小墨迹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值