曲率计算——公式以及意义

曲率(Curvature)是描述曲线弯曲程度的量。在数学中,曲率的定义和公式取决于曲线的表示形式(参数方程、显式方程或隐式方程)。以下是常见的曲率公式及其推导。


1. 参数方程的曲率公式

如果曲线由参数方程表示:
r ( t ) = ( x ( t ) , y ( t ) ) \mathbf{r}(t) = (x(t), y(t)) r(t)=(x(t),y(t))
则曲率( κ \kappa κ)的公式为:
κ = ∣ x ′ ( t ) y ′ ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) ∣ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) 3 / 2 \kappa = \frac{|x'(t) y''(t) - y'(t) x''(t)|}{\left( x'(t)^2 + y'(t)^2 \right)^{3/2}} κ=(x(t)2+y(t)2)3/2x(t)y′′(t)y(t)x′′(t)

推导:
  • 一阶导数: r ′ ( t ) = ( x ′ ( t ) , y ′ ( t ) ) \mathbf{r}'(t) = (x'(t), y'(t)) r(t)=(x(t),y(t))
  • 二阶导数: r ′ ′ ( t ) = ( x ′ ′ ( t ) , y ′ ′ ( t ) ) \mathbf{r}''(t) = (x''(t), y''(t)) r′′(t)=(x′′(t),y′′(t))
  • 曲率公式由切向量和法向量的叉积除以切向量模长的立方得到。

2. 显式方程的曲率公式

如果曲线由显式方程表示:
y = f ( x ) y = f(x) y=f(x)
则曲率 ( \kappa ) 的公式为:
κ = ∣ f ′ ′ ( x ) ∣ ( 1 + f ′ ( x ) 2 ) 3 / 2 \kappa = \frac{|f''(x)|}{\left( 1 + f'(x)^2 \right)^{3/2}} κ=(1+f(x)2)3/2f′′(x)

推导:
  • 一阶导数: f ′ ( x ) f'(x) f(x)
  • 二阶导数: f ′ ′ ( x ) f''(x) f′′(x)
  • 曲率公式由二阶导数除以切向量模长的立方得到。

3. 隐式方程的曲率公式

如果曲线由隐式方程表示:
F ( x , y ) = 0 F(x, y) = 0 F(x,y)=0
则曲率 ( κ \kappa κ) 的公式为:
κ = ∣ F x x F y 2 − 2 F x y F x F y + F y y F x 2 ∣ ( F x 2 + F y 2 ) 3 / 2 \kappa = \frac{|F_{xx} F_y^2 - 2 F_{xy} F_x F_y + F_{yy} F_x^2|}{\left( F_x^2 + F_y^2 \right)^{3/2}} κ=(Fx2+Fy2)3/2FxxFy22FxyFxFy+FyyFx2

推导:
  • ( F x F_x Fx ) 和 ( F y F_y Fy ) 是 ( F F F ) 对 ( x x x ) 和 ( y y y ) 的一阶偏导数。
  • ( F x x F_{xx} Fxx )、( F x y F_{xy} Fxy )、( F y y F_{yy} Fyy ) 是 ( F F F ) 的二阶偏导数。

4. 极坐标方程的曲率公式

如果曲线由极坐标方程表示:
r = r ( θ ) r = r(\theta) r=r(θ)
则曲率 ( κ \kappa κ ) 的公式为:
κ = ∣ r 2 + 2 r ′ 2 − r r ′ ′ ∣ ( r 2 + r ′ 2 ) 3 / 2 \kappa = \frac{|r^2 + 2 r'^2 - r r''|}{\left( r^2 + r'^2 \right)^{3/2}} κ=(r2+r′2)3/2r2+2r′2rr′′

推导:
  • ( r ′ r' r ) 是 ( r r r ) 对 ( θ \theta θ ) 的一阶导数。
  • ( r ′ ′ r'' r′′ ) 是 ( r r r ) 对 ( θ \theta θ ) 的二阶导数。

5. 三维空间曲线的曲率公式

如果曲线由参数方程表示:
r ( t ) = ( x ( t ) , y ( t ) , z ( t ) ) \mathbf{r}(t) = (x(t), y(t), z(t)) r(t)=(x(t),y(t),z(t))
则曲率 ( κ \kappa κ ) 的公式为:
κ = ∥ r ′ ( t ) × r ′ ′ ( t ) ∥ ∥ r ′ ( t ) ∥ 3 \kappa = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} κ=r(t)3r(t)×r′′(t)

推导:
  • ( r ′ ( t ) \mathbf{r}'(t) r(t) ) 是切向量。
  • ( r ′ ′ ( t ) \mathbf{r}''(t) r′′(t) ) 是二阶导数。
  • 曲率公式由切向量和二阶导数的叉积除以切向量模长的立方得到。

6. 曲率的几何意义

  • 曲率 ($ \kappa$ ) 表示曲线的弯曲程度。
  • 曲率越大,曲线弯曲越剧烈。
  • 曲率为 0 时,曲线是直线。

示例

示例 1:圆的曲率

圆的参数方程为:
r ( t ) = ( R cos ⁡ t , R sin ⁡ t ) \mathbf{r}(t) = (R \cos t, R \sin t) r(t)=(Rcost,Rsint)
计算曲率:
r ′ ( t ) = ( − R sin ⁡ t , R cos ⁡ t ) \mathbf{r}'(t) = (-R \sin t, R \cos t) r(t)=(Rsint,Rcost)
r ′ ′ ( t ) = ( − R cos ⁡ t , − R sin ⁡ t ) \mathbf{r}''(t) = (-R \cos t, -R \sin t) r′′(t)=(Rcost,Rsint)
κ = ∣ ( − R sin ⁡ t ) ( − R sin ⁡ t ) − ( R cos ⁡ t ) ( − R cos ⁡ t ) ∣ ( ( − R sin ⁡ t ) 2 + ( R cos ⁡ t ) 2 ) 3 / 2 = R 2 R 3 = 1 R \kappa = \frac{|(-R \sin t)(-R \sin t) - (R \cos t)(-R \cos t)|}{\left( (-R \sin t)^2 + (R \cos t)^2 \right)^{3/2}} = \frac{R^2}{R^3} = \frac{1}{R} κ=((Rsint)2+(Rcost)2)3/2(Rsint)(Rsint)(Rcost)(Rcost)=R3R2=R1

圆的曲率为半径的倒数。

示例 2:抛物线的曲率

抛物线的显式方程为:
y = x 2 y = x^2 y=x2
计算曲率:
f ′ ( x ) = 2 x f'(x) = 2x f(x)=2x
f ′ ′ ( x ) = 2 f''(x) = 2 f′′(x)=2
κ = ∣ 2 ∣ ( 1 + ( 2 x ) 2 ) 3 / 2 = 2 ( 1 + 4 x 2 ) 3 / 2 \kappa = \frac{|2|}{\left( 1 + (2x)^2 \right)^{3/2}} = \frac{2}{\left( 1 + 4x^2 \right)^{3/2}} κ=(1+(2x)2)3/2∣2∣=(1+4x2)3/22


总结

  • 曲率公式根据曲线的表示形式不同而不同。
  • 常见的曲率公式包括参数方程、显式方程、隐式方程和极坐标方程。
  • 曲率的几何意义是描述曲线的弯曲程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.小墨迹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值