曲率(Curvature)是描述曲线弯曲程度的量。在数学中,曲率的定义和公式取决于曲线的表示形式(参数方程、显式方程或隐式方程)。以下是常见的曲率公式及其推导。
1. 参数方程的曲率公式
如果曲线由参数方程表示:
r
(
t
)
=
(
x
(
t
)
,
y
(
t
)
)
\mathbf{r}(t) = (x(t), y(t))
r(t)=(x(t),y(t))
则曲率(
κ
\kappa
κ)的公式为:
κ
=
∣
x
′
(
t
)
y
′
′
(
t
)
−
y
′
(
t
)
x
′
′
(
t
)
∣
(
x
′
(
t
)
2
+
y
′
(
t
)
2
)
3
/
2
\kappa = \frac{|x'(t) y''(t) - y'(t) x''(t)|}{\left( x'(t)^2 + y'(t)^2 \right)^{3/2}}
κ=(x′(t)2+y′(t)2)3/2∣x′(t)y′′(t)−y′(t)x′′(t)∣
推导:
- 一阶导数: r ′ ( t ) = ( x ′ ( t ) , y ′ ( t ) ) \mathbf{r}'(t) = (x'(t), y'(t)) r′(t)=(x′(t),y′(t))
- 二阶导数: r ′ ′ ( t ) = ( x ′ ′ ( t ) , y ′ ′ ( t ) ) \mathbf{r}''(t) = (x''(t), y''(t)) r′′(t)=(x′′(t),y′′(t))
- 曲率公式由切向量和法向量的叉积除以切向量模长的立方得到。
2. 显式方程的曲率公式
如果曲线由显式方程表示:
y
=
f
(
x
)
y = f(x)
y=f(x)
则曲率 ( \kappa ) 的公式为:
κ
=
∣
f
′
′
(
x
)
∣
(
1
+
f
′
(
x
)
2
)
3
/
2
\kappa = \frac{|f''(x)|}{\left( 1 + f'(x)^2 \right)^{3/2}}
κ=(1+f′(x)2)3/2∣f′′(x)∣
推导:
- 一阶导数: f ′ ( x ) f'(x) f′(x)
- 二阶导数: f ′ ′ ( x ) f''(x) f′′(x)
- 曲率公式由二阶导数除以切向量模长的立方得到。
3. 隐式方程的曲率公式
如果曲线由隐式方程表示:
F
(
x
,
y
)
=
0
F(x, y) = 0
F(x,y)=0
则曲率 (
κ
\kappa
κ) 的公式为:
κ
=
∣
F
x
x
F
y
2
−
2
F
x
y
F
x
F
y
+
F
y
y
F
x
2
∣
(
F
x
2
+
F
y
2
)
3
/
2
\kappa = \frac{|F_{xx} F_y^2 - 2 F_{xy} F_x F_y + F_{yy} F_x^2|}{\left( F_x^2 + F_y^2 \right)^{3/2}}
κ=(Fx2+Fy2)3/2∣FxxFy2−2FxyFxFy+FyyFx2∣
推导:
- ( F x F_x Fx ) 和 ( F y F_y Fy ) 是 ( F F F ) 对 ( x x x ) 和 ( y y y ) 的一阶偏导数。
- ( F x x F_{xx} Fxx )、( F x y F_{xy} Fxy )、( F y y F_{yy} Fyy ) 是 ( F F F ) 的二阶偏导数。
4. 极坐标方程的曲率公式
如果曲线由极坐标方程表示:
r
=
r
(
θ
)
r = r(\theta)
r=r(θ)
则曲率 (
κ
\kappa
κ ) 的公式为:
κ
=
∣
r
2
+
2
r
′
2
−
r
r
′
′
∣
(
r
2
+
r
′
2
)
3
/
2
\kappa = \frac{|r^2 + 2 r'^2 - r r''|}{\left( r^2 + r'^2 \right)^{3/2}}
κ=(r2+r′2)3/2∣r2+2r′2−rr′′∣
推导:
- ( r ′ r' r′ ) 是 ( r r r ) 对 ( θ \theta θ ) 的一阶导数。
- ( r ′ ′ r'' r′′ ) 是 ( r r r ) 对 ( θ \theta θ ) 的二阶导数。
5. 三维空间曲线的曲率公式
如果曲线由参数方程表示:
r
(
t
)
=
(
x
(
t
)
,
y
(
t
)
,
z
(
t
)
)
\mathbf{r}(t) = (x(t), y(t), z(t))
r(t)=(x(t),y(t),z(t))
则曲率 (
κ
\kappa
κ ) 的公式为:
κ
=
∥
r
′
(
t
)
×
r
′
′
(
t
)
∥
∥
r
′
(
t
)
∥
3
\kappa = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}
κ=∥r′(t)∥3∥r′(t)×r′′(t)∥
推导:
- ( r ′ ( t ) \mathbf{r}'(t) r′(t) ) 是切向量。
- ( r ′ ′ ( t ) \mathbf{r}''(t) r′′(t) ) 是二阶导数。
- 曲率公式由切向量和二阶导数的叉积除以切向量模长的立方得到。
6. 曲率的几何意义
- 曲率 ($ \kappa$ ) 表示曲线的弯曲程度。
- 曲率越大,曲线弯曲越剧烈。
- 曲率为 0 时,曲线是直线。
示例
示例 1:圆的曲率
圆的参数方程为:
r
(
t
)
=
(
R
cos
t
,
R
sin
t
)
\mathbf{r}(t) = (R \cos t, R \sin t)
r(t)=(Rcost,Rsint)
计算曲率:
r
′
(
t
)
=
(
−
R
sin
t
,
R
cos
t
)
\mathbf{r}'(t) = (-R \sin t, R \cos t)
r′(t)=(−Rsint,Rcost)
r
′
′
(
t
)
=
(
−
R
cos
t
,
−
R
sin
t
)
\mathbf{r}''(t) = (-R \cos t, -R \sin t)
r′′(t)=(−Rcost,−Rsint)
κ
=
∣
(
−
R
sin
t
)
(
−
R
sin
t
)
−
(
R
cos
t
)
(
−
R
cos
t
)
∣
(
(
−
R
sin
t
)
2
+
(
R
cos
t
)
2
)
3
/
2
=
R
2
R
3
=
1
R
\kappa = \frac{|(-R \sin t)(-R \sin t) - (R \cos t)(-R \cos t)|}{\left( (-R \sin t)^2 + (R \cos t)^2 \right)^{3/2}} = \frac{R^2}{R^3} = \frac{1}{R}
κ=((−Rsint)2+(Rcost)2)3/2∣(−Rsint)(−Rsint)−(Rcost)(−Rcost)∣=R3R2=R1
圆的曲率为半径的倒数。
示例 2:抛物线的曲率
抛物线的显式方程为:
y
=
x
2
y = x^2
y=x2
计算曲率:
f
′
(
x
)
=
2
x
f'(x) = 2x
f′(x)=2x
f
′
′
(
x
)
=
2
f''(x) = 2
f′′(x)=2
κ
=
∣
2
∣
(
1
+
(
2
x
)
2
)
3
/
2
=
2
(
1
+
4
x
2
)
3
/
2
\kappa = \frac{|2|}{\left( 1 + (2x)^2 \right)^{3/2}} = \frac{2}{\left( 1 + 4x^2 \right)^{3/2}}
κ=(1+(2x)2)3/2∣2∣=(1+4x2)3/22
总结
- 曲率公式根据曲线的表示形式不同而不同。
- 常见的曲率公式包括参数方程、显式方程、隐式方程和极坐标方程。
- 曲率的几何意义是描述曲线的弯曲程度。