小车模型——阿克曼模型运动学、动力学解析

阿克曼模型的运动学正解、逆解及动力学模型

阿克曼模型(Ackermann Model)是一种经典的车辆运动学模型,广泛应用于自动驾驶、机器人导航等领域。它描述了车辆在给定控制输入(如线速度和转向角)下的运动特性。以下是阿克曼模型的运动学正解、逆解和动力学模型的详细介绍。


1. 阿克曼模型的运动学正解

运动学正解 是指根据车辆的控制输入(如线速度 ( v ) ( v ) (v) 和转向角 ( δ ) ( \delta ) (δ))计算车辆在全局坐标系中的运动状态(如位置 ( x , y ) ( x, y ) (x,y) 和朝向角 ( θ ) ( \theta ) (θ))。

1.1 定义变量
  • ( v ) ( v ) (v):车辆的线速度(单位:米/秒)。
  • ( δ ) ( \delta ) (δ):前轮的转向角(单位:弧度)。
  • ( L ) ( L ) (L):车辆的轴距(单位:米)。
  • ( θ ) ( \theta ) (θ):车辆的朝向角(单位:弧度)。
  • ( x , y ) ( x, y ) (x,y):车辆在全局坐标系中的位置(单位:米)。
1.2 运动学方程

根据阿克曼转向几何,车辆的运动学方程可以表示为:

  • 位置变化率
    x ˙ = v cos ⁡ ( θ ) \dot{x} = v \cos(\theta) x˙=vcos(θ)
    y ˙ = v sin ⁡ ( θ ) \dot{y} = v \sin(\theta) y˙=vsin(θ)
  • 朝向变化率
    θ ˙ = v L tan ⁡ ( δ ) \dot{\theta} = \frac{v}{L} \tan(\delta) θ˙=Lvtan(δ)

这些方程描述了车辆在给定线速度和转向角下的运动。


2. 阿克曼模型的运动学逆解

运动学逆解 是指根据车辆的目标运动状态(如期望的线速度 ( v ) ( v ) (v) 和角速度 ( ω ) ( \omega ) (ω))计算所需的控制输入(如前轮转向角 ( δ ) ( \delta ) (δ))。

2.1 定义变量
  • ( v ) ( v ) (v):期望的线速度(单位:米/秒)。
  • ( ω ) ( \omega ) (ω):期望的角速度(单位:弧度/秒)。
  • ( L ) ( L ) (L):车辆的轴距(单位:米)。
  • ( δ ) ( \delta ) (δ):前轮的转向角(单位:弧度)。
2.2 逆解公式

根据运动学方程,可以推导出前轮转向角 ( δ ) ( \delta ) (δ) 的计算公式:

  • 转弯半径 ( R ) ( R ) (R)
    R = v ω R = \frac{v}{\omega} R=ωv
  • 前轮转向角 ( δ ) ( \delta ) (δ)
    δ = arctan ⁡ ( L R ) = arctan ⁡ ( L ω v ) \delta = \arctan\left(\frac{L}{R}\right) = \arctan\left(\frac{L \omega}{v}\right) δ=arctan(RL)=arctan(vLω)

这些公式允许我们根据车辆的期望运动状态计算所需的前轮转向角。


3. 阿克曼模型的动力学模型

动力学模型 描述了车辆在给定控制输入下的加速度和角加速度。动力学模型考虑了车辆的质量、惯性以及轮子与地面之间的摩擦力。

3.1 定义变量
  • ( m ) ( m ) (m):车辆的质量(单位:千克)。
  • ( I ) ( I ) (I):车辆的转动惯量(单位:千克·米²)。
  • ( F drive ) ( F_{\text{drive}} ) (Fdrive):驱动力(单位:牛顿)。
  • ( T drive ) ( T_{\text{drive}} ) (Tdrive):驱动扭矩(单位:牛顿·米)。
3.2 动力学方程

动力学方程描述了车辆的加速度和角加速度:

  • 线加速度 ( a ) ( a ) (a)
    a = F drive m a = \frac{F_{\text{drive}}}{m} a=mFdrive
  • 角加速度 ( α ) ( \alpha ) (α)
    α = T drive I \alpha = \frac{T_{\text{drive}}}{I} α=ITdrive

这些方程描述了车辆在给定驱动力和驱动扭矩下的动态行为。


4. 实现代码示例

以下是一个简单的 Python 实现,展示了如何计算阿克曼模型的运动学正解和逆解:

import numpy as np

# 阿克曼模型参数
L = 2.5  # 轴距(单位:米)

# 运动学正解
def forward_kinematics(v, delta, theta, dt):
    """
    计算车辆的运动学正解。
    :param v: 线速度(单位:米/秒)
    :param delta: 前轮转向角(单位:弧度)
    :param theta: 当前朝向角(单位:弧度)
    :param dt: 时间步长(单位:秒)
    :return: 新的位置和朝向角
    """
    omega = v / L * np.tan(delta)
    x_dot = v * np.cos(theta)
    y_dot = v * np.sin(theta)
    theta_dot = omega

    x_new = x_dot * dt
    y_new = y_dot * dt
    theta_new = theta + theta_dot * dt

    return x_new, y_new, theta_new

# 运动学逆解
def inverse_kinematics(v, omega):
    """
    计算车辆的运动学逆解。
    :param v: 期望线速度(单位:米/秒)
    :param omega: 期望角速度(单位:弧度/秒)
    :return: 前轮转向角
    """
    delta = np.arctan(L * omega / v)
    return delta

# 示例
v = 5.0  # 线速度(单位:米/秒)
omega = 0.1  # 角速度(单位:弧度/秒)
theta = 0.0  # 初始朝向角(单位:弧度)
dt = 0.1  # 时间步长(单位:秒)

# 计算逆解
delta = inverse_kinematics(v, omega)
print(f"前轮转向角: {delta:.2f} 弧度")

# 计算正解
x_new, y_new, theta_new = forward_kinematics(v, delta, theta, dt)
print(f"新位置: ({x_new:.2f}, {y_new:.2f}), 新朝向角: {theta_new:.2f} 弧度")

5. 总结

阿克曼模型是一种经典的车辆运动学模型,通过运动学正解和逆解,可以实现对车辆运动的精确控制。运动学正解用于根据控制输入计算车辆的运动状态,而逆解用于根据期望的运动状态计算所需的控制输入。动力学模型进一步考虑了车辆的动态行为,适用于更复杂的场景。

阿克曼小车运动学模型是一种用于描述具有前轮转向和后轮驱动的车辆运动的模型。与其他转向模型不同,阿克曼转向模型不能实现原地旋转或通过轮胎、履带差速的方式控制车辆的转向和速度。相反,它使用了阿克曼几何原理来实现车辆的转向。根据阿克曼转向模型,车辆的前轮和后轮都会按照一定的半径进行圆弧运动。具体来说,根据公式v = w * R,车辆的线速度v由角速度w和转弯半径R决定。这种模型在实验车辆和真实车辆的无人驾驶实验中起着重要的作用,因为现代民用汽车通常采用阿克曼转向模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [ROS学习记录(二)阿克曼转向车运动学模型及在gazebo中搭建仿真环境](https://blog.csdn.net/m0_55205668/article/details/124072852)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* [超简单!!!搭建阿克曼ROS小车](https://blog.csdn.net/zhao_ke_xue/article/details/125611011)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.小墨迹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值