有向图(7)--再谈可达性&&有向图总结

本文探讨了有向图中顶点对的可达性问题,如何利用深度搜索算法解决此类问题,并介绍了适用于稀疏和稠密图的解决方案。同时,针对大型有向图的空间和时间复杂度进行了分析,以及在代码实现中对 DirectedDFS 的改进和 Digraph 构造函数的优化。
摘要由CSDN通过智能技术生成

顶点对的可达性。给定一幅有向图,回答“是否存在一条从一个给定的顶点v到另一个给定的顶点w的路径?”等类似问题。

可以使用深度搜索来实现,无论对于稀疏还是稠密的图,它都是理想的解决方案,但它不适用于在实际应用中可能遇到的大型有向图,因为所需的空间和V²成正比,所需时间和V(V+E)成正比。

-TransitiveClosure.h

#ifndef __TRANSITIVE_CLOSURE_H__
#define __TRANSITIVE_CLOSURE_H__

#include "Digraph.h"
#include "DirectedDFS.h"

class TransitiveClosure {
private:
	DirectedDFS* all;

public:
	TransitiveClosure(Digraph G);
<span style="white-space:pre">	</span>~TransitiveClosure() { delete[] all; }
	bool reachable(int v, int w) { return all[v].isMarked(w); }

};

TransitiveClosure::TransitiveClosure(Digraph G) {
	all = new DirectedDFS[G.getV()];
	for (int v = 0; v < G.getV(); ++v)
		all[v].createDFS(G, v);
}

#endif


这里我稍微对之前的DirectedDFS做了修改,还有给Digraph的构造函数添加了默认值,因为new的时候只能调用默认构造函数,所以写了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值