顶点对的可达性。给定一幅有向图,回答“是否存在一条从一个给定的顶点v到另一个给定的顶点w的路径?”等类似问题。
可以使用深度搜索来实现,无论对于稀疏还是稠密的图,它都是理想的解决方案,但它不适用于在实际应用中可能遇到的大型有向图,因为所需的空间和V²成正比,所需时间和V(V+E)成正比。
-TransitiveClosure.h
#ifndef __TRANSITIVE_CLOSURE_H__
#define __TRANSITIVE_CLOSURE_H__
#include "Digraph.h"
#include "DirectedDFS.h"
class TransitiveClosure {
private:
DirectedDFS* all;
public:
TransitiveClosure(Digraph G);
<span style="white-space:pre"> </span>~TransitiveClosure() { delete[] all; }
bool reachable(int v, int w) { return all[v].isMarked(w); }
};
TransitiveClosure::TransitiveClosure(Digraph G) {
all = new DirectedDFS[G.getV()];
for (int v = 0; v < G.getV(); ++v)
all[v].createDFS(G, v);
}
#endif
这里我稍微对之前的DirectedDFS做了修改,还有给Digraph的构造函数添加了默认值,因为new的时候只能调用默认构造函数,所以写了