深度学习第一周:单通道图像——MNIST手写数字识别

一、 前期准备

1. 设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Output:

device(type='cuda')  #代表使用的是GPU

2. 设置随机种子

为了保证实验可以复现,我们通过随机种子控制随机数的生成。

import random
import numpy as np

def set_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     np.random.seed(seed)
     random.seed(seed)
     torch.backends.cudnn.deterministic = True
# 设置随机数种子
set_seed(42)

3. 导入数据

首先,通过内置包,下载数据集:

train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, #True 代表对应的是训练集
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, #False 代表对应的是测试集
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

通过 torch.utils.data.DataLoader 设置 Loader,

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)
  • shuffle=True 代表每个epoch提取数据的顺序都是随机打乱,且元素不重复出现。
imgs, labels = next(iter(train_dl))
imgs.shape #样本数 通道数 长 宽
  • iter(train_dl) 将数据加载器转换为一个迭代器(iterator),使得我们可以使用 Python 的 next() 函数来逐个访问数据加载器中的元素。
  • next() 函数用于获取迭代器中的下一个元素。在这里,它被用来获取 train_dl 中的下一个批量数据。

观察一下对应的 shape,分别对应的是:单个batch 的样本数 通道数 图像的长 图像的宽 (MNIST数据集的单个样本像素值是28*28)

torch.Size([32, 1, 28, 28])

4. 数据可视化

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

  • cmap=plt.cm.binary 对应的是黑白主题

二、构建网络

首先,搭建网络结构,

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x
  • nn.Conv2d(input_channel, output_channel, kernel_size) CNN理论核心——卷积层,设置kernel / filter 大小和个数,用于提取数据特征。
  • nn.MaxPool2d(2) 下采样(池化),降低数据维数,表示抽象概念,传入参数为池化核大小。
  • nn.ReLU激活函数,赋予模型拟合非线性关系的能力。
  • nn.Linear(input_dimension, output_dimension)全连接层,相当于给数据乘以权重矩阵W,W的size由input_dimension, output_dimension和确定。

查看网络参数:

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            320
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            18,496
├─MaxPool2d: 1-4                         --
├─Linear: 1-5                            102,464
├─Linear: 1-6                            650
=================================================================
Total params: 121,930
Trainable params: 121,930
Non-trainable params: 0
=================================================================

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device) # 读取数据时的tensor变量copy一份到device所指定的GPU上
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,y为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  • optimizer.zero_grad()清空上一次的累计梯度
  • loss.backward()根据tensor进行过的数学运算来自动计算其对应的梯度。具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_gradsTrue,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
  • optimizer.step() step()函数的作用是执行一次反向传播,通过梯度下降法来更新参数的值。optimizer只负责通过梯度下降进行优化,而不负责产生梯度

3.测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item() #累计loss
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item() # 累计正确个数

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

import time

for epoch in range(epochs):
    
    since_train = time.time()
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    time_train = time.time() - since_train
    
    since_test = time.time()
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    time_test = time.time() - since_test
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f},Train_Time:{:.3f},Test_Time:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, time_train, time_test))
print('Done')
  • model.train()的作用是启用 Batch Normalization 和 Dropout。
  • model.eval()的作用是关闭 Batch Normalization 和 Dropout。Normalization部分是调用training set中的方差和均值进行。Dropout部分不需要,Dropout部分只是帮助模型训练,防止过拟合。因此我们直接调用模型训练好的参数即可,
Epoch: 1, Train_acc:75.5%, Train_loss:0.869, Test_acc:92.5%,Test_loss:0.233,Train_Time:13.127,Test_Time:1.649
Epoch: 2, Train_acc:94.4%, Train_loss:0.186, Test_acc:96.0%,Test_loss:0.131,Train_Time:14.768,Test_Time:1.607
Epoch: 3, Train_acc:96.4%, Train_loss:0.118, Test_acc:97.3%,Test_loss:0.086,Train_Time:14.600,Test_Time:1.607
Epoch: 4, Train_acc:97.2%, Train_loss:0.090, Test_acc:97.9%,Test_loss:0.072,Train_Time:14.488,Test_Time:1.684
Epoch: 5, Train_acc:97.7%, Train_loss:0.075, Test_acc:97.9%,Test_loss:0.063,Train_Time:14.499,Test_Time:1.560
Epoch: 6, Train_acc:98.0%, Train_loss:0.065, Test_acc:98.3%,Test_loss:0.052,Train_Time:14.410,Test_Time:1.582
Epoch: 7, Train_acc:98.3%, Train_loss:0.057, Test_acc:98.3%,Test_loss:0.052,Train_Time:14.406,Test_Time:1.607
Epoch: 8, Train_acc:98.5%, Train_loss:0.051, Test_acc:98.5%,Test_loss:0.047,Train_Time:14.073,Test_Time:1.648
Epoch: 9, Train_acc:98.6%, Train_loss:0.047, Test_acc:98.7%,Test_loss:0.042,Train_Time:13.935,Test_Time:1.385
Epoch:10, Train_acc:98.7%, Train_loss:0.043, Test_acc:98.5%,Test_loss:0.043,Train_Time:14.086,Test_Time:1.607
Done

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

个人总结

  1. 在深度学习下,GPU的作用很大。对比GPU和CPU时间在此项目下缩短了10倍。
  2. 前期最难的部分是环境搭建,建议大家在某宝上花点小钱。
  3. 梯度的链式传播有助于大家理解模型的运行机制。
  • 38
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值