seg数据集核心信息梳理
seg 数据集核心信息横向表格

| 信息类别 | 具体内容 |
|---|---|
| 数据集类别 | 计算机视觉领域的实例分割(Instance Segmentation)数据集 |
| 数据数量 | 包含 1152 张图像(另有标注提及 “1.2k images”,即约 1200 张,核心数量以 1152 张为准) |
| 数据格式 | 以图像文件形式呈现,配套提供用于学术引用的 BibTeX 格式引用模板 |
| 应用场景 | 可用于计算机视觉相关的实例分割算法训练、模型验证,适配 Construction(建筑)、Manufacturing(制造)、Robotics(机器人)、Self Driving(自动驾驶)等多个领域的计算机视觉任务 |

一、数据数量规模
该数据集拥有明确的图像数量标注,核心图像数量为 1152 张,同时也有近似表述为 1.2k 张(即 1200 张),整体数据量能够为实例分割相关的算法开发和模型训练提供一定规模的样本支撑,满足基础的计算机视觉模型训练对数据量的需求,可支撑开发者完成从算法调试到初步验证的流程。

二、数据集类别属性
从类别定义来看,该数据集属于计算机视觉领域中的实例分割类型,这一类别决定了其核心用途是针对图像中的个体对象进行精准分割 —— 不仅能识别出图像中的目标类别,还能为每个目标标注出独立的轮廓范围,区别于普通的图像分类或目标检测任务,更适用于需要精细区分个体对象的计算机视觉场景。

三、数据格式特征

在数据格式上,该数据集的核心数据以图像文件形式存在,方便开发者直接用于模型的输入训练;同时,为满足学术研究场景的需求,数据集还,开发者若将该数据集用于研究论文,可直接套用该格式完成引用标注,确保学术引用的规范性和便捷性,无需额外手动整理引用格式。
941

被折叠的 条评论
为什么被折叠?



