函数的递归调用
1.1 故事引入:从前有个山…
1.2 思考
1.2.1 这个过程如果没有结束的话,结果是什么?
1.2.2 如果该过程有结束的话,是否应该存在结束条件?
2.1 什么是函数的递归调用?
在调用一个函数的过程中出现了间接或直接地调用该函数本身,称为函数的递归调用。(函数体内调用了该函数本身)
2.2 应用场景
2.2.1 求阶乘
已知
- 1! = 1
- 0! = 1
- n! = n(n-1)! (n>1)
思考递归过程及其终止条件
2.2.2 求斐波那契数列
已知
- F(0) = 0
- F(1) = 1
- F(n) = F(n-1) + F(n-2) (n ≥ 2,n ∈ N*)
思考递归过程及其终止条件
2.3 实现
阶乘实现:
我们使用函数F(n)来表示n!,则可以实现第一步:
定义一个函数F,其输入和输出均为整数:
int F(int n){
}
且已知 0! = 1 和 1! = 1
那么可得F(0)和F(1)的值均为1
那么有:
int F(int n){
if(0==n)return 1;
if(1==n)return 1;
}
但存在n不为0或1的时候,此时对公式2.2.1分析可得:
F(n) = n*F(n-1) (n>1),当n大于1时n!为F(n),那么(n-1)!为F(n-1),于是可得:
int F(int n){
if(0==n)return 1;
if(1==n)return 1;
return n * F(n-1);
}