【蓝桥杯4985】蜗牛(动态规划&java)

文章讲述了如何使用动态规划解决一个关于在杆子间跳跃的问题,通过计算从一根杆到另一根杆的最短时间,包括从传送点转移和直接跳跃两种方式,最后输出到达最后一根杆的最短总时间。
摘要由CSDN通过智能技术生成

问题描述

输入输出

解题思路

算是比较直接的一道动态规划题目,打个草稿找出计算公式即可。 

AC代码

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner scan = new Scanner(System.in);

		int n = scan.nextInt();
		int[] x = new int[n + 1]; // 每根杆的横坐标
		int[] origin = new int[n + 1]; // 传送出发点的高度
		int[] dest = new int[n + 1]; // 传送到达点的高度

		// 读入每根杆的横坐标
		for (int i = 1; i <= n; i++) {
			x[i] = scan.nextInt();
		}

		// 读入传送出发点和到达点的高度
		for (int i = 1; i < n; i++) {
			origin[i] = scan.nextInt();
			dest[i + 1] = scan.nextInt();
		}

		// 动态规划dp数组
		double[][] dp = new double[n + 1][2];
		dp[1][0] = dp[1][1] = x[1]; // 第一根杆只能爬过去

		for (int i = 2; i <= n; i++) {
			// 计算去传送出发点的时间,可以从传送到达点出发,也可以从x轴出发
			double transferTime = origin[i - 1] > dest[i - 1] ? (origin[i - 1] - dest[i - 1]) / 0.7
					: (dest[i - 1] - origin[i - 1]) / 1.3;

			// 取最小值
			transferTime = Math.min(dp[i - 1][1] + transferTime, dp[i - 1][0] + origin[i - 1] / 0.7);

			// 到达(X_i,0)所花时间
			dp[i][0] = Math.min(transferTime + dest[i] / 1.3, dp[i - 1][0] + x[i] - x[i - 1]);

			// 到达第i根竹竿上的传送到达点所花时间
			dp[i][1] = Math.min(transferTime, dp[i][0] + dest[i] / 0.7);
		}

		// 保留两位小数输出结果,即dp[n][0]
		System.out.println(String.format("%.2f", dp[n][0]));
	}
}

(by 归忆)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归忆_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值