问题描述
输入输出
解题思路
算是比较直接的一道动态规划题目,打个草稿找出计算公式即可。
AC代码
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int[] x = new int[n + 1]; // 每根杆的横坐标
int[] origin = new int[n + 1]; // 传送出发点的高度
int[] dest = new int[n + 1]; // 传送到达点的高度
// 读入每根杆的横坐标
for (int i = 1; i <= n; i++) {
x[i] = scan.nextInt();
}
// 读入传送出发点和到达点的高度
for (int i = 1; i < n; i++) {
origin[i] = scan.nextInt();
dest[i + 1] = scan.nextInt();
}
// 动态规划dp数组
double[][] dp = new double[n + 1][2];
dp[1][0] = dp[1][1] = x[1]; // 第一根杆只能爬过去
for (int i = 2; i <= n; i++) {
// 计算去传送出发点的时间,可以从传送到达点出发,也可以从x轴出发
double transferTime = origin[i - 1] > dest[i - 1] ? (origin[i - 1] - dest[i - 1]) / 0.7
: (dest[i - 1] - origin[i - 1]) / 1.3;
// 取最小值
transferTime = Math.min(dp[i - 1][1] + transferTime, dp[i - 1][0] + origin[i - 1] / 0.7);
// 到达(X_i,0)所花时间
dp[i][0] = Math.min(transferTime + dest[i] / 1.3, dp[i - 1][0] + x[i] - x[i - 1]);
// 到达第i根竹竿上的传送到达点所花时间
dp[i][1] = Math.min(transferTime, dp[i][0] + dest[i] / 0.7);
}
// 保留两位小数输出结果,即dp[n][0]
System.out.println(String.format("%.2f", dp[n][0]));
}
}
(by 归忆)