题目背景
矩阵(二维)的重塑(reshape)操作是指改变矩阵的行数和列数,同时保持矩阵中元素的总数不变。
题目描述
矩阵的重塑操作可以具体定义为以下步骤:
设原矩阵为 M,其维度为 n×m,即有 n 行和 m 列。新矩阵为 M′,其维度为 p×q。重塑操作要满足 n×m=p×q,这保证了元素的总数不变。
-
线性化原矩阵:按照行优先的顺序,将原矩阵 M 的元素转换成一个长度为n×m 的一维数组 A。这意味着你先读取 M 的第 00 行元素,然后是第 11 行,依此类推,直到最后一行。
-
填充新矩阵:使用一维数组 A 中的元素按照行优先的顺序填充新矩阵 M′。首先填充 M′ 的第 0 行,直到该行有 q 个元素,然后继续填充第 1 行,直到所有 p 行都被填满。
给定原矩阵中的一个元素的位置 (i,j)(0≤i<n 且 0≤j<m),我们可以找到这个元素在被线性化后的一维数组 A 中的位置 k(0≤k<n×m),然后确定它在新矩阵 M′ 中的位置 (i′,j′)(0≤i′<p 且 0≤j<q)。它们之间满足如下数学关系:i×m+j=k=i′×q+j′
给定 n×m 的矩阵 M 和目标形状 p、q,试将 M 重塑为 p×q 的矩阵 M′。
输入格式
从标准输入读入数据。
输入共 n+1 行。
输入的第一行包含四个正整数 n、m 和 p、q。
接下来依次输入原矩阵 M 的第 0 到第 n−1 行,每行包含 m 个整数,按列下标从 0 到 m−1 的顺序依次给出。
输出格式
输出到标准输出。
输出共 p 行,每行 q 个整数,表示重塑后的矩阵 M′。输出格式与输入相同,即依次输出 M′ 的第 0 行到第 p−1 行;行内按列下标从 0 到 q−1 的顺序输出,且两个整数间仅用一个空格分隔。
样例1输入
2 3 3 2
1 2 3
4 5 6
样例1输出
1 2
3 4
5 6
样例2输入
2 2 1 4
6 6
6 6
样例2输出
6 6 6 6
子任务
全部的测试数据满足:
-
n、m 和 p、q 均为正整数且 n×m=p×q ≤ 10^4;
-
输入矩阵中每个元素的绝对值不超过 1000。
AC代码
import java.util.Scanner;
class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int p = scanner.nextInt();
int q = scanner.nextInt();
int[][] matrix = new int[p][q];
// 下标指针
int pp = 0, qq = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
matrix[pp][qq] = scanner.nextInt();
qq++;
if (qq == q) {
qq = 0;
pp++;
}
}
}
// 输出
for (int i = 0; i < p; i++) {
for (int j = 0; j < q; j++) {
System.out.print(matrix[i][j]);
if (j != q - 1) {
System.out.print(" ");
} else {
System.out.println();
}
}
}
}
}
(by 归忆)