基于图像识别的垃圾分类

基于机器学习的垃圾分类

摘要:2019年垃圾分类由上海开始实施,继而向全国推行,主要将垃圾种类进行划分,其分类包括可回收、厨余、有害和其他。本文以垃圾分类为核心展开系列探究,使用机器学习对垃圾进行分类,主要对白色污染物和有害垃圾进行识别。利用了机器学习的卷积神经网络等功能,借助于深度学习和图像识别将垃圾作出系列研究处理,最终通过Jupyter显示出这个图片的垃圾是哪个类型的垃圾。
本文使用Xception模型做出卷积神经网络对有害垃圾和白色污染物的识别,Xception仅支持 TensorFlow 作为后端。故而使用Jupyter进行展示。Xception主要为卷积神经网络当中所具有的特征图所存在的跨通道相关新能够与空间相关性消除联系。是一个非常好用的卷积神经网络,它对提高识别效果作用非常显著。使用一系列辅助函数,例如:加入目录和文件名的辅助函数,用于画图的辅助函数等。通过scikit-learn去计算权重尽可能平衡数据集。低层的卷积神经网络可以识别图像中的不同形状。它是最后几个全连接的层将这些特征组合成整个图像的分类。因此,将模型的最后一个卷积层的输出重新接到一个新的全连接神经网络,用它来对数据集进行分类。Keras在每个“epoch”结束时记录性能指标,以便稍后进行绘图。在训练期间,训练集的损失值通常会降低,但测试集的损失值有点不稳定。相同的是,在训练集上,分类精度通常有所提高,而在测试集中有些不稳定。在训练之后,使用Keras API中的单个函数来评估新模型在测试集中的性能。
关键词:垃圾分类,卷积神经网络,图像识别,图像处理, Xception模型,迁移学习

Garbage classification based on machine learning

Abstract: In 2019, the garbage classification started from Shanghai and then implemented nationwide, mainly to classify the types of garbage. The classification includes recyclable, food waste, hazardous and others. This article takes garbage classification as the core to carry out a series of investigations, using machine learning to classify garbage, mainly to identify white pollutants and harmful garbage. Using convolutional neural networks and other functions of machine learning, with the help of deep learning and image recognition, the garbage is made into a series of research and processing, and finally Jupyter shows which type of garbage this picture is.
In this paper, the Xception model is used to identify harmful garbage and white pollutants by convolutional neural networks. Xception only supports TensorFlow as a backend. Therefore, Jupyter is used for display. Xception is mainly to eliminate the correlation between the cross-channel correlation existing in the feature maps in the convolutional neural network and the spatial correlation. It is a very easy to use convolutional neural network, which has a very significant effect on improving the recognition effect. Use a series of auxiliary functions, such as auxiliary functions for adding directory and file names, auxiliary functions for drawing, etc. Use scikit-learn to calculate weights to balance the data set as much as possible. The low-level convolutional neural network can recognize different shapes in the image. It is the classification of the last few fully connected layers that combine these features into the entire image. Therefore, the output of the last convolutional layer of the model is reconnected to a new fully connected neural network and used to classify the data set. Keras records performance indicators at the end of each “epoch” for later plotting. During training, the loss value of the training set is usually reduced, but the loss value of the test set is a bit unstable. The same is that, on the training set, the classification accuracy is usually improved, while the test set is somewhat unstable. After training, a single function in the Keras API is used to evaluate the performance of the new model in the test set.
Keywords: Garbage classification, convolution neural network, image recognition, image processing, Xception model, transfer learning

目 录

第1章 绪 论 1
1.1研究背景和意义 1
1.1.1垃圾分类的背景分析 1
1.1.2 本课题的研究意义 3
1.2 文献综述 4
1.2.1 国内研究 4
1.2.2 国外研究 5
1.3垃圾分类的技术 6
第2章 相关技术研究综述 7
2.1机器学习综述 7
2.2机器学习分类 7
2.3机器学习主要算法 8
2.3.1神经网络 8
2.3.2 机器学习的其他算法 9
2.4 机器学习面临的挑战与机遇 9
2.5 总结 10
第3章 垃圾图像的智能分类算法 11
3.1 分类垃圾图像的预处理[15] 11
3.1.1 灰度处理 11
3.1.2 均值滤波去噪 12
3.2 垃圾图像的特征提取 12
3.2.1 垃圾图像的HSV颜色特征提取 12
3.3 卷积神经网络 13
3.3.1 卷积神经网络发展历程 13
3.3.2 卷积神经网络特点 13
3.3.3 卷积神经网络的结构 14
3.3.4 AlexNet卷积神经网络 16
3.3.5 基于Xception卷积神经网络的迁移学习 17
3.4 Keras框架[11] 18
3.5 本章小结 20
四 垃圾分类实验 20
4.1 基于迁移学习和Xception网络分类仿真 20
4.1.1 实验环境 20
4.1.2 模型构建 21
4.1.3 样本数据集 22
4.1.4 训练步骤 22
4.1.5 训练结果 23
4.2 本章小结 24
五 总结与展望 24
5.1 总结 24
5.2 展望 25
参考文献 25
致谢 27

第1章 绪 论

1.1研究背景和意义
1.1.1垃圾分类的背景分析
日常生活当中有个东西无处不在–垃圾,我们可以将这些垃圾分为可回收垃圾、有害垃圾、厨余垃圾、其它垃圾等,这样有利于对垃圾进行有效的处理,也可以针对于不同的垃圾采用不同的处理方式。
我国对垃圾进行分类的标准主要将垃圾划分成四类,也就是可回收、厨余、有害以及干垃圾。上述四种垃圾当中,可回收以及有害垃圾具有较为明显的特征便于区分,厨余主要指的是食物、果皮等腐烂速度较快的垃圾,而干垃圾就是不包括上述垃圾在内的所有垃圾。
据统计数据显示,我国2010年产生的生活垃圾共计可达2.21亿吨,发展至2015年已经达到了2.58亿吨。涨幅较大的城市在情节以及垃圾分类方面作出了适当整改。据2018年数据显示,2017年垃圾清运量产量已经高达2.15亿吨。[1] 通过数据显示,说明我国的城市垃圾呈现出的趋势为逐年增长,并随着垃圾分类的全国推广,未来清运量会增长的更快。
在这里插入图片描述

图1-1生活垃圾清运量

根据垃圾分类相关文件的颁布,按照指示国内首先进行落实垃圾分类的城市有46个,在2020年末,规定的生活垃圾回收率必须提高至35%。其中主要包括的城市有北上广深等等。46个城市当中成功落实垃圾分类的达到31%,而北上广深等城市已经高出70%。
以往的垃圾处理当中,仅仅将可回收垃圾进行人工分类,然后作为回收资源进行处理,其他垃圾都没有得到有效减少。厨房当中产生的废物以及干废物一般是混合收集和转移。所以一边能够进行更为细致的划分,垃圾在收集以及销售层面上主要以可回收废物为对象,并且能够独立形成厨房垃圾以及危险废物的源头,减少焚烧或填埋的压力,减少环境污染。以住房以及城乡建设有关部门进行的数据调查,2017年我国对城市垃圾进行的无害化处理共计20138.2万吨。详情如图1-2所示。
在这里插入图片描述

图1-2 2017年中国城市生活垃圾无害化处理结构图
有害垃圾主要包括能够对人体健康进行破坏的有害金属以及有毒物质等等,都是日常生活当中的潜在危害。例如废旧灯泡、电池等,是“废油漆罐,废旧家用电器,过期的化学药品,过期的化妆品等”。 它由卫生部的专门机构安全处理。
具体范围如图:
在这里插入图片描述

图1-3 有害垃圾
塑料垃圾对环境造成的污染称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值