21、DDIM

In this lesson, Jeremy, Johno, and Tanishq discuss their experiments with the Fashion-MNIST dataset and the CIFAR-10 dataset, a popular dataset for image classification and generative modeling. They introduce Weights and Biases (W&B), an experiment tracking and logging tool that can help manage and visualize the progress of their experiments. The Fréchet Inception Distance (FID) metric is introduced to measure the quality of generated images, and Jeremy demonstrates how to calculate the FID using a custom Fashion-MNIST model. The lesson also covers the Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) metrics for comparing image distributions.

Jeremy explores ways to make the model faster without sacrificing quality. The Denoising Diffusion Implicit Model (DDIM) is introduced as a faster alternative to DDPM, and Jeremy demonstrates how to build a custom DDIM from scratch. The lesson concludes with a discussion on the differences between DDPM and DDIM, as well as the benefits of using DDIM for rapid sampling.

Concepts discussed

  • Weights and Biases (W&B) for experiment tracking
  • Fréchet Inception Distance (FID) metric
  • Kernel Inception Distance (KID) metric
  • Denoising Diffusion Implicit Model (DDIM)

Video

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值