欧拉公式

欧拉公式

欧拉公式是指以欧拉命名的诸多公式。其中最著名的有,复变函数中的欧拉幅角公式--将复数、指数函数与三角函数联系起来; 拓扑学中的欧拉多面体公式;初等数论中的欧拉函数公式。 此外还包括其他一些欧拉公式,比如分式公式等等

基本信息

  • 中文名称

    欧拉公式

 
  • 外文名称

    Euler's formula

目录

1 简介                                                                                                               编辑本段

  (Euler公式)

  在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做

  欧拉公式,分散在各个数学分支之中。

2 分式编辑本段

  a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

  当r=0,1时式子的值为0 当r=2时值为1

  当r=3时值为a+b+c

3 复变函数编辑本段

  e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

  e^ix=cosx+isinx的证明:

  因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……

  cos x=1-x^2/2!+x^4/4!-x^6/6!……

  sin x=x-x^3/3!+x^5/5!-x^7/7!……

  在e^x的展开式中把x换成±ix.

  (±i)^2=-1, (±i)^3=∓i, (±i)^4=1 ……

  e^±ix=1±ix/1!-x^2/2!∓ix^3/3!+x^4/4!……

  =(1-x^2/2!+……)±i(x-x^3/3!……)

  所以e^±ix=cosx±isinx

  将公式里的x换成-x,得到:

  e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:

  e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”

  那么这个公式的证明就很简单了,利用上面的e^±ix=cosx±isinx。 那么这里的π就是x,那么

  e^iπ=cosπ+isinπ

  =-1

  那么e^iπ+1=0

  这个公式实际上是前面公式的一个应用 [1]

  欧拉公式
欧拉公式有4条 
(1)分式: 
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 
当r=0,1时式子的值为0 
当r=2时值为1 
当r=3时值为a+b+c 
(2)复数 
由e^iθ=cosθ+isinθ,得到: 
sinθ=(e^iθ-e^-iθ)/2i 
cosθ=(e^iθ+e^-iθ)/2 
此函数将两种截然不同的函数---指数函数与三角函数联系起来,被誉为数学中的“天桥”。
当θ=π时,成为e^iπ+1=0 它把数学中最重要的e、i、π、1、0联系起来了。
(3)三角形 
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: 
d^2=R^2-2Rr 
(4)多面体 
设v为顶点数,e为棱数,f是面数,则 
v-e+f=2-2p 
p为亏格,2-2p为欧拉示性数,例如 
p=0 的多面体叫第零类多面体 
p=1 的多面体叫第一类多面体 

  等等

4 三角形编辑本段

  设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr

5 拓扑学编辑本段

  事实上,欧拉公式有平面与空间两个部分:

  空间中的欧拉公式

  V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。

  如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。

  X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

  在多面体中的运用:

  简单多面体的顶点数V、面数F及棱数E间有关系

  V+F-E=2

  这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

  平面上的欧拉公式

  V+F-E=X(P),其中V是图形P的定点个数,F是图形P内的区域数,E是图形的边数。

  在非简单多面体中,欧位公式的形式为:

  V-E+F-H=2(C-G)

  其中H指的是平面上不完整的个数,而C指的是独立的多面体的个数,G指的是多面体被贯穿的个数。

  证明

  (1) 把多面体(图中①)看成表面是薄橡皮的中空立体。
(2) 去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。
(3) 对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。
(4) 如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。
(5) 如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。
(6) 这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。
(7) 因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。
(8) 如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。
即F′-E′+V′=1
成立,于是欧拉公式:
F-E+V=2
得证。

  初等数论与欧拉公式

  欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。欧拉公式欧拉证明了下面这个式子:

  如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有

  φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

  利用容斥原理可以证明它。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python中的欧拉公式有多种实现方式,其中最常见的是前向欧拉法、后向欧拉法、中点欧拉法和改进的欧拉法。这些方法都是用于数值解常微分方程的单步格式。具体来说,欧拉公式通过使用已知的点去推测下一个点的位置,并计算其对应的函数值。其中,前向欧拉法使用当前点的导数来估计下一个点的函数值,后向欧拉法使用下一个点的函数值作为未知数,代入方程并求解,中点欧拉法使用当前点和下一个点的导数的平均值来估计下一个点的函数值,而改进的欧拉法先使用显式欧拉公式预测下一个点的函数值,再利用隐式欧拉公式进行纠正,从而提高精度。 下面是一个使用Python实现欧拉公式的示例代码: ```python # 导数部分 def eular_derivative(x0, y0): return 0 - y0**2 # Eular Method - 欧拉公式 def eular_method(start, end, step, y0): y = [y0] x = [start] while x[-1 < end: y.append(y[-1 + eular_derivative(x[-1], y[-1]) * step) x.append(x[-1 + step) return x, y # Improved Eular Method - 改进的欧拉公式 def improved_eular_method(start, end, step, y0): y = [y0] x = [start] while x[-1 < end: Estimate_y = y[-1 + eular_derivative(x[-1], y[-1]) * step y.append(y[-1 + (eular_derivative(x[-1], y[-1]) + eular_derivative(x[-1], Estimate_y)) * step / 2) x.append(x[-1 + step) return x, y # 计算与输出 eular_x, eular_y = eular_method(0, 1, 0.1, 1) # 普通显式欧拉公式 improved_eular_x, improved_eular_y = improved_eular_method(0, 1, 0.1, 1) # 改进欧拉公式 len_num = len(eular_x) print("t\t欧拉\t\t改进欧拉\t精确值") for i in range(len_num): Exact_solution =

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值