Online Cross-Modal Hashing for Web Image Retrieval

本文介绍了一种名为OCMH的方法,针对流式数据的跨模态检索挑战,通过将哈希码拆分为高效SLC矩阵和转换矩阵,解决了哈希码更新不效率及模态间关系分析的问题。方法优化策略包括对Vm和W1、W2的求导,更新时间复杂度低。算法适用于实时处理大规模异质数据,提升关联性。
摘要由CSDN通过智能技术生成

摘要

现有的跨模态检索方法都是基于batch的。

当今的数据都是以流方式传递,批处理对于这种方式的学习效率是很低的。

所以现有的在线哈希方式可以应用于CMH.

然而这些在线方式不能解决两大困难:

1,哈希码的快速更新。2,模态间关系的分析。

我们的方法可以有效地解决上述两个问题,分别通过如下的两种方式:

1,为了解决无效率地哈希码的更新,可以把哈希码拆成有效率的永久SLC矩阵

转换矩阵。时间复杂度就和总的数据库的尺寸无关了。

2,并且我们的方法可以编码潜在语义关系,提升了异质性数据之间的关联。

关于拆分哈希码的深入解释

OCMH把不同模态共享的哈希码拆分成共享潜在编码SLC转换矩阵

  • SLC被所有的模态共享,旧的编码无须改变,只需要把新的数据的哈希码不断

添加进来即可。

  • 新数据提供的改善信息则可以被动态转换矩阵保留。相当于把哈希码又映射到一个

新的空间。这个新空间的意义在于旧的哈希码无须改变,只需要改变转换矩阵,就

可以视作对旧的哈希码进行更新,并且训练这个转换矩阵的时间复杂度极低。

提出方法

其中H是SLC,Vm就是各个模态的动态转移矩阵。

优化策略

1.优化Vm

   通过整个loss对Vm求导,得到

   其中,

   

  •    证明一:计算CH和Em的时间复杂度为O(Nt),与新数据的大小成线性关系。

   

      ,代表旧的哈希码的内积。带(t)的就是新的哈希码的内积。

      可以看出旧的哈希码的内积在上一个迭代中已做了保留,无须计算新的哈希码。

      而新的哈希码的内积需要重新计算。故时间复杂度就是O(Nt).

      

       同理,计算Em的时间复杂度也是O(Nt).

2.优化H^{(t)}

       通过整个loss对H^{(t)}求导,可以得到H^{(t)}的公式:

      

3.优化W2

        把Vm带入到整体的损失函数中,可以得到以下的式子:

        .............................(1)

        其中,

        

        再对W2进行求导为0,可以得到:

       

4.优化W1

    把W1的式子带入到(1)当中,可以得到:

   

    为了避免平凡解,我们对W1进行了约束,

    然后我们就可以通过解决上述的特征值问题得到W1.

(怎么解决特征值问题?)

整体算法

由于Vm已经被旧的数据给优化过了,所以我们不需要太多的迭代优化Vm,

H同理,所以我们把迭代次数设置3.

并且通过证明(博客中不详述),上述更新所有的变量的时间复杂度都为O(Nt).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值