OpenCV 是一个大型的开源计算机视觉库,涵盖了计算机视觉的各个方面, 主要功能包括:
- 图像处理:包括缩放、裁剪、旋转、颜色转换等。
- 视频分析:包括运动检测、跟踪、分类等。
- 图像分类:包括人脸识别、文本识别等。
- 图像识别:包括物体识别、模式识别等。
- 3D 重建:包括立体视觉、点云生成等。
OpenCV 可以用于很多不同的领域,例如:
- 机器人:OpenCV 可以用于机器人的视觉感知、定位和导航。
- 自动驾驶:OpenCV 可以用于自动驾驶汽车的道路检测、车道线检测和车辆检测等。
- 安防:OpenCV 可以用于监控系统的人脸检测、人体检测和行为分析等。
安装OpenCV库
pip install opencv-python
# 清华源
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
显示图片
cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道(或者直接写1)
cv2.IMREAD_GRAYSCALE:读入灰度图片(或者直接写0)
import cv2
img = cv2.imread("test.png")
# 显示图片
cv2.imshow("图片",img)
#图像显示时间
cv2.waitKey(0)
读入一张灰度图:
import cv2
img=cv2.imread("test.jpg",0)
print(img.shape)
获取图像属性
# 获取RGB图的高、宽
heigh = img.shape[0] # 高
width = img.shape[1] # 宽
# 获取RGB图的高、宽、深度
h,w,d = img.shape
# 获得图片大小 h*w 或 h*w*d
img_size = img.size
# 获得图片数据类型
img.dtype
图像保存
import cv2
img = cv2.imread("test.jpg")
cv2.imwrite("test1.jpg",img)
调整图像大小
import cv2
import numpy as np
img = cv2.imread("test.png")
print(img.shape)
# 缩放
resized = cv2.resize(img,(200,400))
print(resized.shape)
cv2.imshow("缩放后的图像", resized)
cv2.waitKey(0)
图像翻转
import cv2
image = cv2.imread("test.png")
imgFlip1 = cv2.flip(image, 1) # 0垂直翻转 ;1水平翻转 ;-1水平和垂直翻转
cv2.imshow("image",imgFlip1)
cv2.waitKey(0)
图像旋转
cv2.ROTATE_90_CLOCKWISE:顺时针旋转 90 度
cv2.ROTATE_180: 旋转 180 度
cv2.ROTATE_90_COUNTERCLOCKWISE:逆时针旋转 90 度
import cv2
image=cv2.imread("test.png")
image2 = cv2.rotate(image,cv2.ROTATE_90_CLOCKWISE) #顺时针旋转90度
cv2.imshow("image2",image2)
cv2.waitKey(0)
裁剪
import cv2
import numpy as np
img = cv2.imread("test.png")
print(img.shape)
# 裁剪
imgCropped = img[46:119,352:495]
cv2.imshow("Image Cropped",imgCropped)
cv2.waitKey(0)
画框
设置的参数:
- img:想要绘制图像的那幅图像,这里是output。
- pt1:矩形左上角坐标,这里是(0, 0)。
- pt2:矩形右下角坐标,这里是(250,350)。
- color:BGR元组,这里是红色(0,0,255)。
- thickness:线条粗细(如果一个闭合图形设置为负数,那么这个图形就会被填充),这里是2。
img = np.zeros((512,512,3),np.uint8)
cv2.rectangle(img,(0,0),(250,350),(0,0,255),2)
cv2.imshow("Image",img)
cv2.waitKey(0)
画圆
import cv2
image = cv2.imread('demo1.jpg')
output = image.copy()
cv2.circle(output, (32, 25), 20, (255,0,0),-1)
cv2.imshow('Circle', output)
cv2.waitKey()
画线
画线的话,我们只需要指定起点和终点即可。
import cv2
image = cv2.imread('demo1.jpg')
output = image.copy()
cv2.line(output, (35,25),(125,69),(255,0,0),5)
cv2.imshow('Line', output)
cv2.waitKey()
我们指定起点为(35,25),终点为(125,69)。
添加文字
设置的参数:
- img:想要绘制图像的那幅图像,这里是output。
- text:要绘制的文字内容,这里是Sasaki Nozomi。
- pt:绘制的位置,这里是(10,25)。
- font:字体类型,这里是cv2.FONT_HERSHEY_SIMPLEX。
- scale:字体大小乘数,这里是0.7。
- color:字体颜色,这里是红色(0,0,255)。
- thickness:字体粗细,这里是2。
import cv2
image = cv2.imread('demo.jpg')
output = image.copy()
cv2.putText(output,'Sasaki Nozomi',(10, 25),cv2.FONT_HERSHEY_SIMPLEX,0.7,(0, 0, 255),2)
cv2.imshow('Text', output)
cv2.waitKey()
二值化图像
THRESH_BINARY:超过阈值为maxval,否则为0
THRESH_BINARY_INV:超过阈值为0,否则为maxval(相当于上个参数取反)
THRESH_TRUNC:超过阈值为thresh,低于阈值灰度值不变
THRESH_TOZERO:超过阈值灰度值不变,否则为0
THRESH_TOZERO_INV:超过阈值为0,低于阈值灰度值不变
import cv2
img = cv2.imread('test.png')
#将彩色图片转化为灰度图
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
#返回两个结果, 一个是阈值, 另一个是处理后的图片
ret,dst = cv2.threshold(gray,175,255,cv2.THRESH_BINARY)
cv2.imshow('dog', np.hstack((gray, dst)))
cv2.waitKey(0)
Numpy生成图像
使用Numpy库生成一个8×8大小数组的黑色图像
import cv2
import numpy as np
import matplotlib.pylab as pylab
img = np.zeros((8,8),dtype=np.uint8) #创建一个8×8的全零数组
pylab.gray() #不使用颜色信息
pylab.imshow(img) #可视化图像
- 📢博客主页:https://blog.csdn.net/qq233325332
- 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
- 📢本文由 陌北V1 原创,首发于 CSDN博客🙉
- 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨