Machine Learning
Serrie.
心存敬畏
展开
-
贝叶斯分类器基本原理总结
文中借鉴引用CSDN各大博主图片,文献,思想。非完全原创贝叶斯分类器的基本脉络基本原理什么是贝叶斯决策论: 通过相关概率已知的情况下利用误判损失来选择最优的分类器。误判损失也叫风险。即原本为Cj的样本被误分类成Ci产生的期望损失其中lambda便为损失,损失乘以概率得到期望损失(风险)。而我们的目标则是寻找一个判定准则h以最小化R。...原创 2019-04-11 13:24:00 · 6079 阅读 · 0 评论 -
SVM支持向量机原理总结
文中借鉴引用CSDN各大博主文献,图片,并非完全原创。支持向量机SVM是一种二类分类模型,其基本模型是定义在特征空间上的间隔最大的线性分类器。硬间隔:要求所有样本又必须划分正确软j间隔:允许一些样本(不满足(w^t)x + b >= 1)出错。当训练数据线性可分时:通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机(硬间隔SVM)。当训练数据近似线...原创 2019-04-11 13:26:22 · 973 阅读 · 0 评论