# -*- coding:utf-8 -*-
import numpy as np
def py_cpu_nms(dets, thresh):
"""
:param dets:N*M 二维数组, N是BBOX的个数, M的前四位对应的是(x1, y1, x2, y2) 第5位是对应的分数 x y为坐标
:param thresh:0.3 0.5....
:return: box after nms
"""
x1 = dets[:, 0] #意思是取一个二维数组中所有行的第0列 是numpy数组中的一种写法
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
sorces = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1) #求每个box的面积
order = sorces.argsort()[::-1] #对分数进行倒序排序 order存的就是排序后的下标
# argsort()函数用法:对代操作数组元素进行从小到大排序,并将排序后对应原数组元素的下标输出到生成数组中
keep = []#用来保存最后留下的box
while order.size > 0:
i = order[0] #无条件保留每次置信度最高的box i代表的是下标,是sorces中分数最高的下标
keep.append(i) #第i + 1个box
#置信度最高的box和其他剩下bbox的交叉区域
xx1 = np.maximum(x1[i], x1[order[1:]]) # np.maximum 两个数字逐位比,取其较大值。返回一个数组
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
#计算置信度最高的bbox和其他剩下的bbox之间交叉区域的面积
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h #inter是数组
#求交叉区域的面积占两者(置信度最高的bbox和其他bbox)面积和的比例 iou值
ovr = inter / (areas[i] + areas[order[1:]] - inter) #ovr也是按照倒序排序排列的 iou由大到小
#保留小于thresh的框,进入下一次迭代
inds = np.where(ovr <= thresh)[0] #idx保存的是满足ovr<=thresh的第一个ovr值的下标
#因为order[0]是我们的areas[i] 所以得到的inds还要+1才是下一个order[0]
order = order[inds + 1]
return keep