时间限制:1.0s 内存限制:256.0MB
问题描述
兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。
平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
蚂蚁的头部朝向为:上下左右其中一方。
蚂蚁的移动规则十分简单:
若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。
规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。
蚂蚁的路线是很难事先预测的。
你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
接下来是 m 行数据。
每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。
接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0
看完这题之后 我感觉这题并不难,只是有点麻烦, 感觉就是简单的对数组进行标记处理就行
下面贴上我的代码。
#include <stdio.h>
int a[1000][1000];
int nn, mm;
char fangxiang(int x, char ch)
{
if(x == 1)
{
a[nn][mm] = 0;
if(ch == 'U')
ch = 'R';
else if(ch == 'R')
ch = 'D';
else if(ch == 'D')
ch = 'L';
else if(ch == 'L')
ch = 'U';
}
else if(x == 0)
{
a[nn][mm] = 1;
if(ch == 'U')
ch = 'L';
else if(ch == 'L')
ch = 'D';
else if(ch == 'D')
ch = 'R';
else if(ch == 'R')
ch = 'U';
}
return ch;
}
void lujing(char ch)
{
if(ch == 'U')
nn-=1;
else if(ch == 'L')
mm-=1;
else if(ch == 'D')
nn+=1;
else if(ch == 'R')
mm+=1;
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
int i, j;
for(i = 0;i < n;i ++)
for(j = 0;j < m;j ++)
scanf("%d", &a[i][j]);
char ch ;
int k ;
scanf("%d %d %c %d",&nn,&mm,&ch,&k);
while(k--)
{
ch = fangxiang(a[nn][mm],ch);
lujing (ch);
}
printf("%d %d", nn, mm);
return 0;
}