ChatGPT技术原理 第九章:数据集和训练技巧

本文详细介绍了ChatGPT的训练关键,包括对话数据集的选择,如Cornell Movie Dialogs Corpus和Persona-Chat,以及数据预处理、预训练技巧、微调技巧和多任务学习的应用,旨在提升对话系统的性能和泛化能力。
摘要由CSDN通过智能技术生成

目录

9.1 对话数据集

9.2 数据预处理

9.3 预训练技巧

9.4 微调技巧

9.5 多任务学习


9.1 对话数据集

对话数据集是指用于训练和评估对话系统的语料库。这些数据集通常包含一系列对话,涵盖不同的主题和领域,并包括用户和系统之间的交互。对话数据集的质量和多样性对于训练和评估对话系统非常重要,因为这些数据可以影响对话系统的性能和能力。

对话数据集通常由两部分组成:对话文本和标签。对话文本包括用户和系统之间的对话文本,而标签则表示每个对话的预期输出,例如回答问题或执行特定任务。这些标签通常由人类标注,以确保其准确性和可靠性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

榴莲酱csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值