23年 AI 大模型技术狂飙一年后,24年 AI 大模型的应用已经在爆发,因此掌握好 AI 大模型的应用开发技术就变成如此重要,那么如何才能更好地掌握呢?一份 AI 大模型详细的知识图谱和学习路线就变得非常重要!由于 AI 大模型应用技术比较新,业界也没什么参照标准,的打造 AI 大模型技术的知识图谱和学习路线并非一件容易的事。 本人稍微梳理了一下路线图,希望能够帮助到对AI大模型技术感兴趣的朋友,方便更多的人加入到AI技术的研究中来,打造完善一条完整的学习路线
1. 基础知识
1. 基础知识
数学基础
线性代数
了解矩阵
和向量
运算,这是神经网络的基础。
-
参考书籍:《线性代数及其应用》 by Gilbert Strang
-
在线课程:MIT OpenCourseWare 的线性代数课程
微积分
理解微积分
,特别是偏导数
和梯度下降
。
-
参考书籍:《微积分:一种现代方法》 by Tom M. Apostol
-
在线课程:Khan Academy 的微积分课程
概率与统计
理解概率分布
、期望
和方差
,及其在机器学习中的应用。
-
参考书籍:《概率导论》 by Dimitri P. Bertsekas 和 John N. Tsitsiklis
-
在线课程:Coursera 的概率与统计课程
2. 编程基础
Python
学习Python
编程语言,这是AI和机器学习中最常用
的语言。
Python学习书籍:
数据处理库
熟悉NumPy
、Pandas
等数据处理库。
3. 机器学习基础
基本概念
了解监督学习、无监督学习、强化学习等基本概念。
参考书籍:《机器学习》 by Tom M. Mitchell
经典算法
学习线性回归
、逻辑回归
、决策树
、支持向量机
等经典机器学习算法。
在线资源:Kaggle 机器学习竞赛和教程
4. 深度学习
神经网络基础
理解神经元、前向传播
、反向传播
等基本概念。
参考书籍:《深度学习》 by Ian Goodfellow, Yoshua Bengio 和 Aaron Courville
深度学习框架
学习TensorFlow或PyTorch等深度学习框架的使用。
在线资源:TensorFlow 和 PyTorch 的官方教程
5. 大模型开发
自然语言处理(NLP)
学习处理文本数据的技术,如词嵌入
、序列到序列模型、注意力
机制等。
参考书籍:《深度学习自然语言处理》 by Yoav Goldberg
大规模预训练模型
了解BERT
、GPT
等大规模预训练模型的架构和训练方法。
研究论文:BERT, GPT-2/3 的原始论文
实践项目:Hugging Face 的 Transformers 库
分布式训练
学习如何在多个GPU/TPU上进行分布式训练,以处理大规模数据和模型。
在线资源:TensorFlow 和 PyTorch 的分布式训练教程
6. Llama3框架
Llama3
简介
了解Llama3框架的基本概念和用途。
参考资源:Llama3 官方文档
安装与配置
学习如何安装和配置Llama3框架。
官方文档提供详细的安装步骤和配置指南。
基础操作
熟悉Llama3的基本操作,包括数据加载、模型定义和训练。
官方教程和示例代码
进阶使用:深入学习Llama3的高级功能,如自定义模型、优化和调参。
7. 微调模型
微调
概念
了解微调(Fine-tuning)的基本概念和原理。
在线资源: 微调模型指南
微调Llama3
学习如何在Llama3框架中进行模型微调。
官方文档和示例代码
实践项目:通过实际项目进行微调练习,如文本分类、命名实体识别等。
8. LangChain 框架学习
9. 实践项目和竞赛
Kaggle:参与Kaggle竞赛,通过实际项目提升技能。
开源项目:在GitHub上寻找并贡献于开源的AI项目。
个人项目:选择一个感兴趣的领域,如图像识别、语言翻译,进行个人项目开发。
10. 持续学习
阅读论文
定期阅读最新的AI研究论文,保持对领域前沿的了解。
参加会议:参加AI相关的会议和研讨会,如NeurIPS、ICML等。
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
文章知识点与官方知识档案匹配,可进一步学习相关知识