机器学习补充(一)——正则化与稀疏

本文介绍了稀疏性和正则化的概念,重点探讨了L1正则化如何导致模型参数的稀疏性。通过公式推导,展示了L1正则化在梯度下降过程中更容易使权重w趋向于0,从而实现稀疏解,而L2正则化则难以达到这一效果。
摘要由CSDN通过智能技术生成

什么是稀疏?

稀疏指的是消除数据中一些特征,用来使模型泛化,减小过拟合的几率

什么是正则化?

正则化(regularizer)指的是通过给需要训练的目标函数加上一些规则(限制),缩小求解的范围。

如何证明L1正则化会导致稀疏?

正则化的目的是,当系数w为0时,损失函数正好可以得到最优值(最小值)。

公式推导

从梯度的角度看
C = C 0 + λ ∑ ∣ w ∣ C=C_0+\lambda\sum\left|w\right| C=C0+λw
C为带有正则项的损失函数。 C 0 C_0 C0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值