深度学习基础(二)传统神经网络

本文介绍了神经网络中引入非线性激励函数的原因,如Sigmoid、tanh和ReLU,讨论了它们的优缺点。接着,讲解了神经网络的组成部分,包括深度、广度和关键配件如损失函数、学习率与动量,并探讨了如何对抗过拟合的方法。

参考文章:
常用的非线性激励函数

从线性到非线性

常见的非线性激励函数

在神经网络中为什么要引入非线性激励函数?

为了回答上述这个问题,我们先抛出一个与之相关的问题:什么叫线性?
线性就是利用形如: f ( x ) = w x + b f ( x ) = w x + b f(x)=wx+b 的表达式来表示输入与输出的关系。假如输入 x x

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值