参考文章:
常用的非线性激励函数
从线性到非线性
常见的非线性激励函数
在神经网络中为什么要引入非线性激励函数?
为了回答上述这个问题,我们先抛出一个与之相关的问题:什么叫线性?
线性就是利用形如: f ( x ) = w x + b f ( x ) = w x + b f(x)=wx+b 的表达式来表示输入与输出的关系。假如输入 x x
本文介绍了神经网络中引入非线性激励函数的原因,如Sigmoid、tanh和ReLU,讨论了它们的优缺点。接着,讲解了神经网络的组成部分,包括深度、广度和关键配件如损失函数、学习率与动量,并探讨了如何对抗过拟合的方法。
参考文章:
常用的非线性激励函数
在神经网络中为什么要引入非线性激励函数?
为了回答上述这个问题,我们先抛出一个与之相关的问题:什么叫线性?
线性就是利用形如: f ( x ) = w x + b f ( x ) = w x + b f(x)=wx+b 的表达式来表示输入与输出的关系。假如输入 x x
2565

被折叠的 条评论
为什么被折叠?