题目链接:https://leetcode.com/problems/paint-house/
There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n x 3
cost matrix. For example,costs[0][0]
is the cost of painting house 0 with color red; costs[1][2]
is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.
Note:
All costs are positive integers.
思路: 一道很明显的动态规划的题目. 每个房子有三种染色方案, 那么如果当前房子染红色的话, 最小代价将是上一个房子的绿色和蓝色的最小代价+当前房子染红色的代价. 对另外两种颜色也是如此. 因此动态转移方程为:
dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0];
dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];
dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];
代码如下:
class Solution {
public:
int minCost(vector<vector<int>>& costs) {
if(costs.size()==0) return 0;
int len = costs.size();
vector<vector<int>> dp(len+1, vector<int>(3, 0));
for(int i = 1; i <= len; i++)
{
dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0];
dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];
dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];
}
return min(dp[len][0], min(dp[len][1], dp[len][2]));
}
};