[leetcode] 256. Paint House 解题报告

这道LeetCode题目要求在给定不同成本的情况下,找到染色所有房子的最低总成本,且相邻房子颜色不能相同。通过动态规划策略,用三个状态分别表示每个房子染红、蓝、绿三种颜色的最小成本,通过比较前一个房子不同颜色的成本来更新当前房子的状态,得到动态转移方程。最后得出的代码实现了这一逻辑。
摘要由CSDN通过智能技术生成

题目链接:https://leetcode.com/problems/paint-house/

There are a row of n houses, each house can be painted with one of the three colors: red, blue or green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x 3 cost matrix. For example,costs[0][0] is the cost of painting house 0 with color red; costs[1][2] is the cost of painting house 1 with color green, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.


思路: 一道很明显的动态规划的题目. 每个房子有三种染色方案, 那么如果当前房子染红色的话, 最小代价将是上一个房子的绿色和蓝色的最小代价+当前房子染红色的代价. 对另外两种颜色也是如此. 因此动态转移方程为: 

             dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0];

             dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];

             dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];

代码如下:

class Solution {
public:
    int minCost(vector<vector<int>>& costs) {
        if(costs.size()==0) return 0;
        int len = costs.size();
        vector<vector<int>> dp(len+1, vector<int>(3, 0));
        for(int i = 1; i <= len; i++)
        {
            dp[i][0] = min(dp[i-1][1], dp[i-1][2]) + costs[i-1][0];
            dp[i][1] = min(dp[i-1][0], dp[i-1][2]) + costs[i-1][1];
            dp[i][2] = min(dp[i-1][0], dp[i-1][1]) + costs[i-1][2];
        }
        return min(dp[len][0], min(dp[len][1], dp[len][2]));
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值