关于错误:OOM ResourceExhaustedError 的原因及解决方式

【错误】:我使用SSD训练图片分类器,参数大概有几百万个并不是很多,然而报错OOM ResourceExhaustedError

【原因】:

(1)batchsize太大,这种只需要将batchsize减小就行了

(2)GPU的显存太小,或者剩余的显存太少了

【解决方法】:

(1)查看GPU显存大小,再计算自己模型和参数量占用显存的大小,如果大于或者接近等于显存容量,换显卡或者减小模型,如果远远小于,打开任务管理器,查看其他程序是否占用了显存

(不会计算模型和参数量的可以参考以下两个博客:https://www.cnblogs.com/walter-xh/p/10609868.html

                                                                                  https://www.jianshu.com/p/b8d48c99a47c

(2)还有一种情况是:batchsize太大,这种只需要将batchsize减小就行了,如果减为1,还是报错,参考第一条

 

【总结】:这种错误归根原因是模型太大导致显存不够,减小batchsize相当于减小每次投入显存的训练数据,但batchsize太小会加长训练时间,而且容易陷入局部解。有条件的话还是更换硬件,或者尝试优化减小模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值