const int N = 210005;
const int INF=0x7FFFFFFF;
struct SBT
{
int key,left,right,size;
} tree[N];
int root,top;
void init(){
root=top=0;
}
/以下函数x参数带root
void left_rot(int &x)
{
int y = tree[x].right;
tree[x].right = tree[y].left;
tree[y].left = x;
tree[y].size = tree[x].size;//转上去的节点数量为先前此处节点的size
tree[x].size = tree[tree[x].left].size + tree[tree[x].right].size + 1;
x = y;
}
void right_rot(int &x)
{
int y = tree[x].left;
tree[x].left = tree[y].right;
tree[y].right = x;
tree[y].size = tree[x].size;
tree[x].size = tree[tree[x].left].size + tree[tree[x].right].size + 1;
x = y;
}
void maintain(int &x,bool flag)
{
if(flag == false)//左边
{
if(tree[tree[tree[x].left].left].size > tree[tree[x].right].size)//左孩子的左子树大于右孩子
right_rot(x);
else if(tree[tree[tree[x].left].right].size > tree[tree[x].right].size)//右孩子的右子树大于右孩子
{
left_rot(tree[x].left);
right_rot(x);
}
else return;
}
else //右边
{
if(tree[tree[tree[x].right].right].size > tree[tree[x].left].size)//右孩子的右子树大于左孩子
left_rot(x);
else if(tree[tree[tree[x].right].left].size > tree[tree[x].left].size)//右孩子的左子树大于左孩子
{
right_rot(tree[x].right);
left_rot(x);
}
else return;
}
maintain(tree[x].left,false);
maintain(tree[x].right,true);
maintain(x,true);
maintain(x,false);
}
/*
*insert没有合并相同的元素,如果出现相同的元素则把它放到右子树上,这样能保证求第k小数的时候对相同元素也能正确
*/
void insert(int &x,int key)
{
if(x == 0)
{
x = ++top;
tree[x].left = tree[x].right = 0;
tree[x].size = 1;
tree[x].key = key;
}
else
{
tree[x].size ++;
if(key < tree[x].key) insert(tree[x].left,key);
else insert(tree[x].right,key);//相同元素插入到右子树中
maintain(x, key >= tree[x].key);//每次插入把平衡操作压入栈中
}
}
int del(int &p,int w)
{
if (tree[p].key==w || (tree[p].left==0 && w<tree[p].key) || (tree[p].right==0 && w>tree[p].key))
{
int delnum=tree[p].key;
if (tree[p].left==0 || tree[p].right==0) p=tree[p].left+tree[p].right;
else tree[p].key=del(tree[p].left,INF);
return delnum;
}
if (w<tree[p].key) return del(tree[p].left,w);
else return del(tree[p].right,w);
}
int remove(int &x,int key)
{
int d_key;
//if(!x) return 0;
tree[x].size --;
if((key == tree[x].key)||(key < tree[x].key && tree[x].left == 0) ||
(key>tree[x].key && tree[x].right == 0))
{
d_key = tree[x].key;
if(tree[x].left && tree[x].right)
{
tree[x].key = remove(tree[x].left,tree[x].key+1);
}
else
{
x = tree[x].left + tree[x].right;
}
}
else if(key > tree[x].key)
d_key = remove(tree[x].right,key);
else if(key < tree[x].key)
d_key = remove(tree[x].left,key);
return d_key;
}
int getmin()
{
int x;
for(x = root ; tree[x].left; x = tree[x].left);
return tree[x].key;
}
int getmax()
{
int x;
for(x = root ; tree[x].right; x = tree[x].right);
return tree[x].key;
}
int select(int &x,int k)//求第k小数
{
int r = tree[tree[x].left].size + 1;
if(r == k) return tree[x].key;
else if(r < k) return select(tree[x].right,k - r);
else return select(tree[x].left,k);
}
int Rank(int &x,int key)//求key排第几
{
if(key < tree[x].key)
return Rank(tree[x].left,key);
else if(key > tree[x].key)
return Rank(tree[x].right,key) + tree[tree[x].left].size + 1;
return tree[tree[x].left].size + 1;
}
int pred(int &x,int y,int key)//前驱 小于
{
if(x == 0) return y;
if(tree[x].key < key)
return pred(tree[x].right,x,key);
else return pred(tree[x].left,y,key);
}
int succ(int &x,int y,int key)//后继 大于
{
if(x == 0) return y;
if(tree[x].key > key)
return succ(tree[x].left,x,key);
else return succ(tree[x].right,y,key);
}
void inorder(int &x)
{
if(x==0) return;
else
{
inorder(tree[x].left);
cout<<x<<" "<<tree[x].key<<" "<<" "<<tree[x].size<<" "<<tree[tree[x].left].key<<" "<<tree[tree[x].right].key<<endl;
inorder(tree[x].right);
}
}
Size Balanced Tree(SBT)平衡二叉树
最新推荐文章于 2023-02-15 21:00:59 发布