向Dassl中添加自己的数据集

本文介绍了如何在Dassl框架下添加自定义数据集进行领域适应研究,包括数据集结构准备、注册文件编写和train.py中的导入,以支持无监督学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于使用Dassl注册自己的数据集

向Dassl中添加自己的数据集

最近第一次使用dassl做域适应工作,发现dassl在域适应领域是一个常见的工具,以此记录。

一.简单介绍Dassl

Dassl是一个pytorch工具箱,用于支持领域自适应与泛化性的研究。

二.向Dassl中加入自己的数据集

1.按照Dassl中已有的数据集来准备自己的数据集
举个例子,我这里参考office_home的结构来准备自己的数据集:
在这里插入图片描述
office_home的结构为主文件里包含四个域的子文件,每个子文件下又有各个类别文件,类别文件中存储jpg格式的图片。(无标签文件,可能因为我参考的文章做的是无监督。如果需要有监督学习请自己去根据对应的数据集自行准备。)
2.将准备好的数据集文件放在datasets目录中
在这里插入图片描述
3.按照自己参考制作数据集的文件,准备注册.py文件
这里博主调代码的时候给Dassl.pytorch/dassl/data/datasets/da/目录下与参考文章的项目代码…/datasets/下都放了注册用的py文件,大家在调试过程中可以尝试一下哪个是没必要放的。
在这里插入图片描述

里面包含的代码片段:

@DATASET_REGISTRY.register()
class OfficeHome(DatasetBase):

注册用的py文件中第一句代码就是用于注册你准备好的数据集的
注意!这个py文件写好后不需要单独运行,这个是和你的项目文件一起运行的。
3.在train.py中导入你准备好的py文件中数据集的类名
如上面的代码块,class OfficeHome,
需要在train.py中使用:

from dassl.data.datasets import OfficeHome

导入你的类名,否则会报 注册列表中没有你的数据集名称 的错误。
ok到这里基本已经成功了。
要义就是你需要找一个dassl已有的数据集来准备自己的数据集,然后别忘了train.py文件的导入。
希望这条博客能帮助到你!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值