TensorFlow笔记之变量管理

本文介绍了TensorFlow中如何通过变量名称管理变量,主要涉及`tf.get_variable`和`tf.Variable`两个函数。它们在创建变量时功能相似,但`tf.get_variable`更倾向于获取已存在的变量,需要在变量作用域内使用。通过`tf.variable_scope`创建上下文管理器,可以实现变量的复用和命名空间管理。理解这些概念有助于提高代码效率,避免参数传递的繁琐。
摘要由CSDN通过智能技术生成

TenssorFlow中通过变量名称获取变量,主要通过两个函数:tf.get_variabletf.variable_scope

  • tf.get_variable
    TensorFlow在创建变量时,它和tf.Variable的功能基本等价的。
    例如:
v = tf.get_variable("v", shape = [1], initializer = tf.constant_initializer(1.0))

v = tf.Variable(tf.constant(1.0, shape = [1], name = "v")

  tf.get_variabletf.Variable最大的区别,在于指定变量名称的参数。对于前者,变量名称是一个必填的参数,它根据这个名字

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值