tensorflow
萝卜虫
看他好像一个AI吖··
展开
-
TensorFlow笔记之变量管理
TenssorFlow中通过变量名称获取变量,主要通过两个函数:tf.get_variable和tf.variable_scopetf.get_variable TensorFlow在创建变量时,它和tf.Variable的功能基本等价的。 例如:v = tf.get_variable("v", shape = [1], initializer = tf.constant_initialize原创 2017-05-01 22:19:21 · 658 阅读 · 0 评论 -
TensorFlow笔记之基础总结
本文主要对TensorFlow的基础知识做一下总结回顾计算图:计算模型计算图概念 TensorFlow的所有计算都会被转化为计算图上的节点。 Tensor就是张量。可以简单理解为多维数组,表明了它的数据结构,Flow就是“流”,它直观地表达了张量之间通过计算相互转化的过程。 TensorFlow是一个通过计算图的形式来表述计算的编程系统。TensorFlow的每一个计算都是计算图上的一个节原创 2017-04-27 00:02:54 · 1797 阅读 · 0 评论 -
TensorFlow笔记之常见七个参数
对TensorFlow深度学习中常见参数的总结分析 神经网络中常见的参数有:初始学习率、学习率衰减率、隐藏层节点数量、迭代轮数、正则化系数、滑动平均衰减率、批训练数量七个参数。 对这七个参数,大部分情况下,神经网络的参数选优是通过实验来调整的。 一个想法是,通过测试数据来评判参数的效果,但是这种方法会导致过拟合测试数据,失去评判未知数据的意义。而我们训练神经网络的目的,恰恰是为了预测原创 2017-05-01 14:58:53 · 2464 阅读 · 0 评论 -
TensoFlow解决过拟合问题:正则化、滑动平均模型、衰减率
对多层神经网络的总结激活函数 神经网络解决非线性问题的方法是使用激活函数,TensorFlow中常用的激活函数有:tf.nn.relu、tf.sigmoid、tf.tanh。 使用激活函数的前向传播算法:a = tf.nn.relu(tf.matmul(x, w1) + biases1。 反向传播算法 反向传播算法是训练神经网络的核心算法。它可以根据定义好的损失函数优化神经网原创 2017-04-29 00:21:09 · 4223 阅读 · 0 评论 -
tf.argmax()以及axis解析
用tensorflow做CNN_TEXT文本分类时,看到这个API,然后去官网查了一下,再看了一下别的资料,算是明白它的处理方式了。首先,明确一点,tf.argmax可以认为就是np.argmax。 简单的说,tf.argmax就是返回最大的那个数值所在的下标。这个很好理解,只是tf.argmax()的参数让人有些迷惑,比如,tf.argmax(array, 1)和tf.argmax(arr原创 2017-04-23 18:40:13 · 64268 阅读 · 41 评论 -
CNN情感分析(文本分类)
这篇文章翻译至denny britz的博客,本来想自己用TensorFlow实现CNN情感分析,看过denny的github后,就决定不浪费时间了。当然,会在他的基础上做一些改进。一、数据预处理 这个情感分析的数据集来自Rotten Tomatoes的电影评论,总共10662个样本,一半正例,一半负例,词汇的数目大概2万个。 任何机器学习能够得到很好的执行,数据预处理都很重要。首先,简单介翻译 2017-05-10 22:58:09 · 23120 阅读 · 10 评论 -
spyder不能引入tensorflow
Anaconda3\envs\tensorflow\Lib\site-packages的文件复制到Anaconda3\Lib\site-packages中原创 2018-08-23 10:55:32 · 2245 阅读 · 1 评论