题目描述:搜索旋转排序数组
假设按照升序排序的数组在预先未知的某个点上进行了旋转。( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] )。搜索一个给定的目标值,如果数组中存在这个目标值,则返回它的索引,否则返回 -1 。你可以假设数组中不存在重复的元素。你的算法时间复杂度必须是 O(log n) 级别。
示例 1:
输入: nums = [4,5,6,7,0,1,2], target = 0
输出: 4
示例 2:
输入: nums = [4,5,6,7,0,1,2], target = 3
输出: -1
算法思路:可以发现规律,对于任意一个旋转排序数组nums,设数组的第一个元素位置为left,最后一个元素位置为right,则必有:
[left,mid]区间或者[mid,right]区间至少有一个区间是完全有序的,
例如:对于旋转数组 3 4 5 6 7 1 2,left=0,right=6,mid(left+right)/2=3,
[left,mid]=>[0,3]区间所有元素为3 4 5 6
[mid,right]=>[3,6]区间所有元素为6 7 1 2
显然左半边区间是有序的,同时,判断是否有序只需要判断左半边区间的左端点nums[0]<nums[3]是否成立即可。利用这个特性,我们可以实现算法如下:
首先令 i=0,j=numSize-1
当i<=j时执行以下步骤
- 计算出mid=(i+j)/2,判断如果nums[mid]==target,则直接返回mid
- 如果左半边区间[i,mid)区间有序(注意区间的一定时左边闭区间,右边因为mid已经判断了,可以是开区间)要分两种情况:①如果target的值介于该区间内,则继续进入该区间搜索,j=mid-1②如果target的值不介于该区间,则说明target要么不存在,要么再另外一个区间,而存不存在暂时不能判断,所以直接进入另外一个区间继续搜索,i=mid+1
- 如果左半边区间无序,那右半边区间一定是有序的,判断步骤和第二步相仿。
如果循环执行完都没找到,那么显然数组中没有target,直接返回-1
算法实现
int search(int* nums, int numsSize, int target){
int i=0,j=numsSize-1;
while(i<=j){
int mid=(i+j)/2;
if(nums[mid]==target){
return mid;
}
//当(mid,j]区间元素有序时
if(nums[mid]<nums[j]){
//如果target在(mid,j]区间时
if(nums[mid]<target&&nums[j]>=target){
i=mid+1;
}
//如果target在[i,mid)区间时
else{
j=mid-1;
}
}
//当[i,mid)区间元素有序时
else{
if(nums[mid]>target&&nums[i]<=target){
j=mid-1;
}
else{
i=mid+1;
}
}//nums[i]<nums[mid]
}
return -1;
}