poj 3070 Fibonacci (矩阵快速幂)

题目链接:    http://poj.org/problem?id=3070

题目大意:    求Fibonacci数列第n项(0 ≤ n ≤ 1,000,000,000),对m取模后的结果

解题思路:    直接求解第n项,由于n太大,时间复杂度非常高

                   我们需要构造一个矩阵使得与(a,b)相乘后等于(b,a+b)

                   不防假设2x2矩阵为:

                    x1      x2                     a               b 

                                          X                    =

                    x3      x4                     b             a+b

                   则b=x1*a+x2*b,a+b=x3*a+x4*b

                   解得: x1=0,x2=1,x3=1,x4=1

                   同理可得(a,b)*A^n可求出 (数列第n+1项,数列第n+2项)

                   A^n用矩阵快速幂的思想可以优化为O(log N)

代码:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAX 3
typedef struct node{
	int edge[MAX][MAX];
}Matrix;
int n,m=10000;

Matrix map,ant,h;

void Mult(Matrix &a,Matrix &b,Matrix &c) //传递指针,C=A*B
{
	int i,j,k;
	memset(h.edge,0,sizeof(h.edge));
	for(i=0;i<2;i++)
		for(j=0;j<2;j++)
			for(k=0;k<2;k++)
			{
				h.edge[i][j]+=a.edge[i][k]*b.edge[k][j];  //***分开写,否则会WA
				h.edge[i][j]%=m;                          //***
			}
	for(i=0;i<2;i++)
		for(j=0;j<2;j++)
			c.edge[i][j]=h.edge[i][j];
}

void KSM(Matrix a,int k)   //矩阵快速幂
{
	while(k>=1)
	{
		if(k&1)            //二进制的思想
			Mult(ant,map,ant);
		Mult(map,map,map);
		k>>=1;
	}
}


int main()
{
	while(scanf("%d",&n)&&n!=-1)
	{
		map.edge[0][0]=0;                           //初始化矩阵
		map.edge[0][1]=map.edge[1][0]=map.edge[1][1]=1;
		ant.edge[0][0]=1,ant.edge[0][1]=1;
		if(n!=0)    
        {
			KSM(ant,n-1);     //求第n项,既求 (1,1)*A^(n-1)
		    printf("%d\n",ant.edge[0][0]);
		}
		else                  //第0项为0
			printf("0\n");
	}
	return 0;
}


以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始化单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值