1.TensorFlow常用基础操作

1. tf程序:构建计算图和执行计算

import tensorflow as tf
import sys #用以打印版本信息

#定义计算图(The computation graph)
w = tf.Variable([[0.5,1.0]])   #行向量
x = tf.Variable([[2.0],[1.0]]) #列向量
y = tf.matmul(w,x)#这边矩阵的顺序不能乱
print(y)#这只能打印数据格式
#python3.5print后需要加括号
#对变量进行初始化
init_op = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init_op)
    print(y.eval())

    print(sys.version)#打印python的版本
    print(tf.__version__)#打印TensorFlow的版本
    print(tf.__path__)#打印TensorFlow的安装目录

程序的输出如下:

Tensor("MatMul:0", shape=(1, 1), dtype=float32)
[[ 2.]]
3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul  5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)]
0.12.1
['C:\\Users\\CaoYichao\\Anaconda3\\lib\\site-packages\\tensorflow']

这里y代表的是计算过程,名称为“MatMul:0”,维度为(1, 1)的矩阵,数据类型为float32。

2.for循环执行3次计算图

import tensorflow as tf
#构建计算图
state = tf.Variable(0)
new_value = tf.add(state,tf.constant(1))
update = tf.assign(state,new_value)
#执行计算
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(state))
    print("for loop")
    for i in range(3):
        sess.run(update)    #执行3次计算图
        print(state.eval())

    sess.run(tf.assign(state,100))
    print(state.eval())

打印信息如下:

0
for loop
1
2
3
100

3.numpy矩阵转tensor(不推荐使用)

import tensorflow as tf
import numpy as np

a = np.zeros((3,3))
ta = tf.convert_to_tensor(a)
with tf.Session() as sess:
    print(sess.run(ta))

打印如下:

[[ 0.  0.  0.]
 [ 0.  0.  0.]
 [ 0.  0.  0.]]

4.placeholder占位符的使用

import tensorflow as tf
#构建计算图
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1,input2)
#执行计算
with tf.Session() as sess:
    print(sess.run([output],feed_dict={input1:[4.0],input2:[2.5]}))

打印如下:

[array([ 10.], dtype=float32)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值