归并排序及其时间复杂度分析

1》归并排序的步骤如下:

       Divide: 把长度为n的输入序列分成两个长度为n/2的子序列。

       Conquer: 对这两个子序列分别采用归并排序。      

       Combine: 将两个排序好的子序列合并成一个最终的排序序列。

2》时间复杂度:

                
 
       这是一个递推公式(Recurrence) ,我们需要消去等号右侧的T(n),把T(n)写成n的函数。其实符合一定条件的Recurrence的展开有数学公式可以套,这里我们略去严格的数学证明,只是从直观上看一下这个递推公式的结果。当n=1时可以设T(1)=c 1,当n>1时可以设T(n)=2T(n/2)+c 2n,我们取c 1和c 2中较大的一个设为c,把原来的公式改为:

       这样计算出的结果应该是T(n)的上界。下面我们把T(n/2)展开成2T(n/4)+cn/2(下图中的(c)),然后再把T(n/4)进一步展开,直到最后全部变成T(1)=c(下图中的(d)):

       把图(d)中所有的项加起来就是总的执行时间。这是一个树状结构,每一层的和都是cn,共有lgn+1层,因此总的执行时间是cnlgn+cn,相比nlgn来说,cn项可以忽略,因此T(n)的上界是Θ(nlgn)。

       如果先前取c1和c2中较小的一个设为c,计算出的结果应该是T(n)的下界,然而推导过程一样,结果也是Θ(nlgn)。既然T(n)的上下界都是Θ(nlgn),显然T(n)就是Θ(nlgn)。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值