题目大意:
给你一个长度为n的黑白交叉斑马线,因为主角一些原因,他不能踩到黑色的斑马线上。给出你脚长,每一步固定走的距离,和每一条斑马线的长度,问你是否可以走到斑马线另外一头。
思路:
因为他都的一定是是k步,所以他能出发的位置可以看成一个区间,每k段里面的黑色就是这个区间不能走的位置,如果最后区间被完全覆盖完,那就走不到,否则走的到。(我的程序都在瞎搞。。)
程序:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define N 1000005
#define LL long long
int a[N],t,s,k,n,len;
struct data{int l,r;}b[N];
bool cmp(data a,data b){return a.l<b.l;}
inline int read()
{
int k=0;
char f=1;
char c=getchar();
for(;!isdigit(c);c=getchar() )
if(c=='-')
f=-1;
for(;isdigit(c);c=getchar() )
k=k*10+c-'0';
return k*f;
}
int main(){
freopen("emotional.in","r",stdin);
freopen("emotional.out","w",stdout);
scanf("%d",&t);
while (t){
t--; bool flag=0; int sum=1;
len=0;
s=read(); k=read(); n=read();
memset(a,0,sizeof(a));
for (int i=1;i<=n;i++) {
a[i]=read();
if (i&1) a[i]=a[i]+s;
else a[i]=a[i]-s;
if (a[i]<0) a[i-1]+=a[i],a[i]=0;
if (i&1&&a[i]>k) flag=1;
}
if (flag) {
printf("NIE\n");
continue;
}
for (int i=1;i<=n;i++)
if (i&1){
b[++len].l=sum+1;
b[len].r=std::min(sum+a[i]-1,k);
if (sum+a[i]-1>b[len].r){
b[++len].l=1;
b[len].r=std::max(1,sum+a[i]-b[len-1].r-2);
}
sum=(sum+a[i]-1)%k+1;
} else sum=(sum+a[i]-1)%k+1;
std::sort(b+1,b+len+1,cmp);
if (b[1].l!=1) flag=1;
if (flag) {
printf("TAK\n");
continue;
}
int cmax=b[1].r;
for (int i=2;i<=n;i++){
if (b[i].l<=cmax+1) cmax=std::max(cmax,b[i].r);
else {
if (cmax>=k) break;
flag=1;
break;
}
}
if (flag) {
printf("TAK\n");
continue;
}
printf("NIE\n");
}
}