- 可能有些小伙伴在刚学习的时候不太适应Linux系统,我在Windows系统下也跑通了这个框架,但是在保存训练模型的时候,出现了内存溢出,导致无法保存模型。
- 我使用的自用笔记本的GPU是1060 6G的,算力在庞大的faster r cnn 面前还是略输一筹。
- 所以一下内容是借助了拥有4块2080Ti的GPU服务器实现的
- 我们要训练一个好的模型,并进行应用,目前来说是离不开Linux系统的,索性直接在该系统下操作吧。
- 主要步骤分:
Python环境配置
faster r cnn 组件下载并微调
数据集制作
训练
测试
Python环境配置
-
这里使用的是Python3.6的版本,链接原作者说明,3.5,3.6,3.7都可以用。
-
安装tensorflow gpu版本
pip install tensorflow -gpu -
安装一下Python包:
pip install matplotlib pip install cython pip install pillow pip install opencv-python pip install easydict
在github上下载tensorflow框架下的faster_r_cnn:
git clone --recursive https://github.com/dBeker/Faster-RCNN-TensorFlow-Python3.git
编译
- 进入: ./data/coco/PythonAPI编译:
python setup.py build_ext --inplace
python setup.py build_ext install - 进入./lib/utils 继续编译
python setup.py build_ext --inplace
检测data/cache下是否有文件,这个文件是第一次加载数据以后所保存的文件,方便以后快捷提取数据进行训练,但是如果要使用新数据集,需要删除掉之前缓存的这个文件,不然会报错。

制作数据集:(要制作为这个样子)
data\VOCdevkit2007\VOC2007

本文介绍了在TensorFlow框架下使用Faster R-CNN进行目标检测的完整流程,包括Python环境配置、Faster R-CNN组件下载与微调、数据集制作、训练和测试。在Windows和Linux环境下都进行了实践,特别是在Linux环境下,详细阐述了从数据预处理到模型训练和测试的每个步骤。
最低0.47元/天 解锁文章
597





