图论中的双射

双射

单射:指将不同的变量映射到不同的值的函数。
满射:指陪域等于值域的函数。即:对陪域中任意元素,都存在至少一个定义域中的元素与 之对应。
双射(也称一一对应):既是单射又是满射的函数。直观地说,一个双射函数形成一个对 应,并且每一个输入值都有正好一个输出值以及每一个输出值都有正好一个输入值。 (在一些参考书中,“一一”用来指双射,但是这里不用这个较老的用法。)

双射(单射与满射)
双射
单射但非满射
单射

双射(bijection)

既是单射又是满射的函数称为双射. 函数为双射当且仅当每个可能的像有且仅有一个变量与之对应。
函数 {\displaystyle f:A\to B} f:A\to B为双射当且仅当对任意 {\displaystyle b\in B} b\in B存在唯一 {\displaystyle a\in A} a\in A满足 {\displaystyle f(a)=b} f(a)=b。
函数f : A → B为双射当且仅当其可逆,即,存在函数g: B → A满足g o f = A上的恒等函数,且f o g为B上的恒等函数。
两个双射的复合也是双射。如g o f为双射,则仅能得出f为单射且g为满射。见右图。
同一集合上的双射构成一个对称群。
如果 X,Y皆为实数R ,则双射函数 f:R–>R可以被视觉化为两根任意的水平直线只相交正好一次。(这是水平线测试的一个特例。)

双射函数经常被用于表明集合X和Y是等势的,即有一样的基数。如果在两个集合之间可以建立一个一一对应,则说这两个集合等势。
如果 X,Y皆为有限集合,则这两个集合中 X,Y之间存在一个双射,当且仅当X和Y的元素数相等。其实,在公理集合论中,元素数相同的定义被认为是个特例,一般化这个定义到无限集合需要导入基数的概念,这是一个区别各类不同大小的无限集合的方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值