前情提要
In [1]
# 字符串进阶
string1 = 'Hi, my name is Molly!'
len(string1)
string1.count('m')
string1.find('name')
# string1.index('hello')
string1.split(' ')
string1.replace(' ','_')
string1.upper()
string1.lower()
string1.capitalize()
'Hi, my name is molly!'
In [2]
# 格式化输出
name = 'Molly'
hight = 170.4
score_math = 95
score_english = 89
print('大家好!我叫%s,我的身高是%d cm, 数学成绩%d分,英语成绩%d分' % (name, hight, score_math, score_english))
print('大家好!我叫{:s},我的身高是{:d} cm, 数学成绩{:d}分,英语成绩{}分'.format(name, int(hight), score_math, score_english))
print(f"大家好!我叫{name},我的身高是{int(hight)} cm, 数学成绩{score_math}分,英语成绩{score_english}分")
大家好!我叫Molly,我的身高是170 cm, 数学成绩95分,英语成绩89分
大家好!我叫Molly,我的身高是170 cm, 数学成绩95分,英语成绩89分
大家好!我叫Molly,我的身高是170 cm, 数学成绩95分,英语成绩89分
In [3]
# 列表进阶
list1 = ['a','b','c','d','e','f']
list1.append('g') # 在末尾添加元素
list1.insert(2, 'ooo') # 在指定位置添加元素,如果指定的下标不存在,那么就是在末尾添加
list2 = ['z','y','x']
list1.extend(list2) #合并两个list list2中仍有元素
In [4]
list1 = ['a','b','a','d','a','f']
print(list1.count('a'))
print(list1.index('a'))
print(list1.pop())
print(list1)
list1.remove('a')
print(list1)
3
0
f
['a', 'b', 'a', 'd', 'a']
['b', 'a', 'd', 'a']
In [5]
# 列表生成式
list_1 = [1,2,3,4,5]
[n+1 for n in list_1]
[n for n in list_1 if n%2==0]
[2, 4]
函数
函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。
函数能提高应用的模块性,和代码的重复利用率。你已经知道Python提供了许多内建函数,比如print()。但你也可以自己创建函数,这被叫做用户自定义函数。
- 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号()。
- 任何传入参数和自变量必须放在圆括号中间。圆括号之间可以用于定义参数。
- 函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。
- 函数内容以冒号起始,并且缩进。
- return [表达式] 结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回 None。
定义一个函数;函数调用
In [6]
def student_name(name):
"打印学生的名字"
print('姓名:', name)
return {'姓名':name}
In [7]
rst = student_name('Alice')
rst
姓名: Alice
{'姓名': 'Alice'}
In [8]
# 返回多个值
def student_name_and_age():
"记录学生的名字和年龄"
name = input('请输入姓名\n')
age = int(input('请输入年龄\n'))
print(f'姓名:{name};年龄:{age}')
return name,age
In [9]
rst = student_name_and_age()
请输入姓名
请输入年龄
姓名:hh;年龄:22
In [10]
type(rst)
tuple
In [14]
name, age = student_name_and_age()
请输入姓名
请输入年龄
姓名:hh;年龄:5
In [15]
## 函数的嵌套调用
def worker(s):
rst = 10 / float(s)
return rst
def group_leader(s):
rst = worker(s) * 2
return rst
def CTO(s):
return group_leader(s)
In [16]
CTO('4')
5.0
参数传递
- 位置参数
- 缺省参数
- 可变参数
- 关键字参数
- 命名关键字参数
位置参数
位置参数是最简单的一种函数调用的方式。位置参数须以正确的顺序传入函数、数量必须和声明时的一样。
In [17]
def student_name_and_age(name, age):
print('姓名:%s 年龄 %s' %(name, age))
In [18]
student_name_and_age('张三', 18)
姓名:张三 年龄 18
缺省参数
调用函数时,缺省参数的值如果没有传入,则被认为是默认值。
In [19]
def student_name_and_age(name, age='不愿透露'):
"设置默认参数"
print('姓名:%s 年龄 %s' %(name, age))
In [20]
student_name_and_age('张三')
姓名:张三 年龄 不愿透露
In [21]
# 也可以为默认参数赋值
student_name_and_age('张三', 18)
姓名:张三 年龄 18
可变参数
顾名思义,可变参数就是传入的参数个数是可变的,可以是1个、2个到任意个,还可以是0个。
In [22]
def all_student_names(*names):
for name in names:
print('姓名:', name)
In [23]
all_student_names('张三','李四','王五')
姓名: 张三
姓名: 李四
姓名: 王五
可变参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。
In [24]
def all_student_names(names):
for name in names:
print('姓名:', name)
In [ ]
names = ('张三','李四','王五')
all_student_names(names)
关键字参数
关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
In [25]
def student_info(name, age, **kw):
print(f'我的名字叫:{name},年龄:{age},其它信息:{kw}')
In [26]
student_info('张三', 18, height=180)
我的名字叫:张三,年龄:18,其它信息:{'height': 180}
In [27]
def student_info(name, age, **kw):
print(f'我的名字叫:{name},年龄:{age},其它信息:{kw}')
if 'city' in kw:
print('来自:', kw['city'])
In [28]
student_info('张三', 18, height=180, city='北京')
我的名字叫:张三,年龄:18,其它信息:{'height': 180, 'city': '北京'}
来自: 北京
In [29]
def score_info(name, yuwen, shuxue):
print(name, '的语文成绩', yuwen)
print(name, '的数学成绩', shuxue)
def person_info(name, age, yuwen, shuxue):
print('姓名:', name, '年龄',age)
score_info(name, yuwen, shuxue)
person_info('张三', 18, 65, 60)
姓名: 张三 年龄 18
张三 的语文成绩 65
张三 的数学成绩 60
In [30]
def score_info(name, **kw):
if '语文成绩' in kw:
print(name, '的语文成绩', kw['语文成绩'])
if '数学成绩' in kw:
print(name, '的数学成绩', kw['数学成绩'])
def person_info(name, age, **kw):
print('姓名:', name, '年龄',age)
score_info(name, **kw)
score_cfg = {'语文成绩':65, '数学成绩':60}
person_info('张三', 18, **score_cfg)
姓名: 张三 年龄 18
张三 的语文成绩 65
张三 的数学成绩 60
命名关键字参数
如果要限制关键字参数的名字,就可以用命名关键字参数
In [31]
def print_person_info(name, age, *, height, weight):
print('我的名字叫:', name, '年龄:', age,'身高', height, '体重', weight)
In [32]
print_person_info('张三', 18, height=180, weight=75)
我的名字叫: 张三 年龄: 18 身高 180 体重 75
参数的组合
在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
In [33]
def student_info(name, age=18, *books, **kw):
print('我的名字叫:', name, '年龄:', age,'其它信息:',kw)
if 'city' in kw:
print('来自:', kw['city'])
for book in books:
print('我有',book,'书')
In [34]
student_info('张三', 18, '语文','数学','计算机', city='北京', height=180, weight=75)
我的名字叫: 张三 年龄: 18 其它信息: {'city': '北京', 'height': 180, 'weight': 75}
来自: 北京
我有 语文 书
我有 数学 书
我有 计算机 书
In [35]
def student_info(name, age=18, *books, city, **kw):
# 如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*了:
print('我的名字叫:', name, '年龄:', age,'其它信息:',kw)
print('来自:', city)
for book in books:
print('我有',book,'书')
In [36]
student_info('张三', 18, '语文','数学','计算机', city='北京', height=180, weight=75)
我的名字叫: 张三 年龄: 18 其它信息: {'height': 180, 'weight': 75}
来自: 北京
我有 语文 书
我有 数学 书
我有 计算机 书
变量的作用域和global变量
1.局部变量 作用域:在函数内
2.全局变量 作用域:在函数外
函数优先使用局部变量 在没有局部变量的情况下, 使用全局变量
In [37]
name = '张三'
def print_my_name():
name='李四'
print(name)
print_my_name()
李四
In [38]
name = '张三'
def print_my_name():
print(name)
print_my_name()
张三
In [39]
# 定义在函数内部的变量,函数结束之后自动消亡
def get_my_name():
new_name = '赵四'
get_my_name()
new_name
---------------------------------------------------------------------------NameError Traceback (most recent call last)<ipython-input-39-50225d753478> in <module> 3 new_name = '赵四' 4 get_my_name() ----> 5 new_name NameError: name 'new_name' is not defined
函数可以看作是单向玻璃 - - 不要对着车窗剔牙!
In [40]
def change_my_name():
print('我的名字曾经是', name)
name = '李四'
print('我的名字现在是', name)
In [41]
name = '张三'
change_my_name()
name
---------------------------------------------------------------------------UnboundLocalError Traceback (most recent call last)<ipython-input-41-9452ee1a9be8> in <module> 1 name = '张三' ----> 2 change_my_name() 3 name <ipython-input-40-a750cf076394> in change_my_name() 1 def change_my_name(): ----> 2 print('我的名字曾经是', name) 3 name = '李四' 4 print('我的名字现在是', name) UnboundLocalError: local variable 'name' referenced before assignment
In [ ]
def change_my_name():
global name
print('我的名字曾经是', name)
name = '李四'
print('我的名字现在是', name)
In [ ]
name = '张三'
change_my_name()
name
lambda匿名函数
python 使用 lambda 来创建匿名函数。
lambda 只是一个表达式,函数体比 def 简单很多。
lambda 的主体是一个表达式,而不是一个代码块。仅仅能在 lambda 表达式中封装有限的逻辑进去。
lambda 函数拥有自己的命名空间,且不能访问自有参数列表之外或全局命名空间里的参数。
虽然 lambda 函数看起来只能写一行,却不等同于 C 或 C++ 的内联函数,后者的目的是调用小函数时不占用栈内存从而增加运行效率。
In [42]
# lambda 若干个输入参数 : 返回值的表达式
lambda arg1, arg2: arg1 + arg2
<function __main__.<lambda>(arg1, arg2)>
In [43]
(lambda arg1, arg2: arg1 + arg2 )(1, 2)
3
In [44]
# 加法运算 接受两个参数,返回参数之和
add = lambda arg1, arg2: arg1 + arg2
add(1,2)
3
In [ ]
# 数字转字符串
int2str = lambda x : str(x)
int2str(5)
高阶函数
In [ ]
# print本身是一个内建函数
print('hello!')
In [ ]
print
In [ ]
# 函数名其实就是指向函数的变量!
my_print = print
my_print('a')
In [ ]
# 那么,函数的名字也可以作为一个变量,传入其它函数
def func_x(x, f):
return f(x)
In [ ]
func_x(-1, abs)
In [ ]
# 一个函数可以接收另一个函数作为参数,这种函数就称之为高阶函数。
int2str = lambda x : str(x)
func_x(-112, int2str)
In [ ]
# 一个更复杂的例子
def func_xy(x, y ,f):
return f(x,y)
add = lambda x,y : x+y
mul = lambda x,y : x*y
SS = lambda x,y : x**2 + y**2
In [ ]
print(func_xy(1,2,add))
print(func_xy(1,2,mul))
print(func_xy(1,2,SS))
map / reduce
map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。
In [ ]
fx = lambda x:x**2
In [ ]
ls = [1,2,3,4,5,6,7,8,9]
ms = []
for l in ls:
ms.append(fx(l))
ms
In [ ]
rst = map(fx, ls)
list(rst)
In [ ]
map(fx, ls)
In [ ]
int2str = lambda x : str(x)
rst = map(int2str, ls)
list(rst)
reduce: 用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,依此类推,最后得到一个结果。
In [ ]
from functools import reduce
# 从python3开始,reduce函数移动到了functools这个包,每次使用前要先import
In [ ]
mul_xy = lambda x, y: x*y
In [ ]
reduce(mul_xy, [1, 3, 5, 7, 9])
sorted
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
In [ ]
sorted([36, 5, -12, 9, -21])
In [ ]
sorted([36, 5, -12, 9, -21], reverse=True)
In [ ]
sorted([36, 5, -12, 9, -21], key=abs) # 按绝对值排序key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序
In [ ]
list(map(abs, [36, 5, -12, 9, -21]))
In [ ]
points = [(5,2), (7,3), (3,4),(1,1),(2,6)] # 按x坐标排序 y坐标排序 和0点距离排序
In [ ]
f_x = lambda x:x[0]
sorted(points, key=f_x)
In [ ]
f_y = lambda x:x[1]
sorted(points, key=f_y)
In [ ]
f_r = lambda x:x[0]**2+x[1]**2
sorted(points, key=f_r)
装饰器
函数作为返回值
In [ ]
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax
In [ ]
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
In [ ]
f = lazy_sum(1, 3, 5, 7, 9) # 这里暂时还不想计算
In [ ]
f
In [ ]
f()
In [ ]
f1 = lazy_sum(1, 3, 5, 7, 9)
print(id(f1))
f2 = lazy_sum(1, 3, 5, 7, 9)
print(id(f2))
闭包
python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure).
In [ ]
def create_pointer(my_string):
def pointer(n):
return my_string[n]
return pointer
In [ ]
pointer = create_pointer('my name is Molly')
pointer(5)
In [ ]
# 一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。
def count():
fs = []
for i in range(1, 4):
def f():
# print(id(i))
return i*i
fs.append(f)
return fs
f1, f2, f3 = count()
In [ ]
print(f1())
print(f2())
print(f3())
In [ ]
def count():
def f(j):
def g():
# print(id(j))
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs
In [ ]
f1, f2, f3 = count()
print(f1())
print(f2())
print(f3())
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
装饰器
顾名思义,从字面意思就可以理解,它是用来"装饰"Python的工具,使得代码更具有Python简洁的风格。换句话说,它是一种函数的函数,因为装饰器传入的参数就是一个函数,然后通过实现各种功能来对这个函数的功能进行增强。
In [ ]
def worker1():
print('我是一个勤劳的工作者!')
def worker2():
print('我是一个勤劳的工作者!')
def worker3():
print('我是一个勤劳的工作者!')
In [ ]
# 我现在想要打印一些日志信息
def worker1():
print('worker1 is working...')
print('我是一个勤劳的工作者!')
In [ ]
worker1()
In [ ]
worker1.__name__
In [ ]
# 装饰器输入一个函数,输出一个函数
def print_working(func):
def wrapper():
print(f'{func.__name__} is working...')
func()
return wrapper
In [ ]
def worker1():
print('我是一个勤劳的工作者!')
def worker2():
print('我是一个勤劳的工作者!')
def worker3():
print('我是一个勤劳的工作者!')
worker1 = print_working(worker1)
worker1()
worker2= print_working(worker2)
worker2()
In [ ]
@print_working
def worker1():
print('我是一个勤劳的工作者!')
@print_working
def worker2():
print('我是一个勤劳的工作者!')
@print_working
def worker3():
print('我是一个勤劳的工作者!')
In [ ]
worker1()
worker2()
worker3()
装饰器最大的优势是用于解决重复性的操作,其主要使用的场景有如下几个:
- 计算函数运行时间
- 给函数打日志
- 类型检查
当然,如果遇到其他重复操作的场景也可以类比使用装饰器。
In [ ]
def arg_decorator(func):
def wrapper(*args, **kw):
print(f'{func.__name__} is working...')
func(*args, **kw)
return wrapper
In [ ]
# 带参数的装饰器
@arg_decorator
def student_info(name, age=18, *books, **kw):
print(f'我的名字叫{name}, 今年{age}岁,我有很多本书:')
for book in books:
print(book)
print(kw)
In [ ]
student_info('Molly',18, '语文书','数学书',height=170)
偏函数
通过设定参数的默认值,降低函数调用的难度
In [ ]
def student_info(name, age, city):
print(f'我的名字叫{name}, 今年{age}岁,来自{city}')
In [ ]
student_info('Molly',18,'北京')
In [ ]
def student_info(name, age, city='北京'):
print(f'我的名字叫{name}, 今年{age}岁,来自{city}')
In [ ]
student_info('Molly',18)
In [ ]
from functools import partial
In [ ]
def student_info(name, age, city):
print(f'我的名字叫{name}, 今年{age}岁,来自{city}')
student_info_beijing = partial(student_info, city='北京')
In [ ]
student_info_beijing('Molly',18)
In [ ]
student_info_beijing('Molly',18, city='上海')
In [ ]
# 另一个例子
def add_xy(x,y):
return x+y
In [ ]
add_100 = partial(add_xy, y=100)
In [ ]
add_100(10)
模块
In [ ]
import time
In [ ]
print(time.time())
time.sleep(1)
print(time.time())
In [ ]
# 和装饰器结合
def time_decorator(func):
def wrapper():
time_start = time.time()
func()
time_end = time.time()
print(f'程序执行了{round(time_end-time_start, 3)}秒')
return wrapper
In [ ]
@time_decorator
def a_loop():
for i in range(int(1e7)):
continue
In [ ]
a_loop()
In [ ]
from functools import partial as pr
In [ ]
# 另一个例子
def add_xy(x,y):
return x+y
In [ ]
add_100 = partial(add_xy, y=100)
In [ ]
import numpy as np
import pandas as pd
安装/卸载第三方模块
- pip install / uninstall
- conda install / uninstall